é DEGREE PROJECT, IN COMPUTER SCIENCE , SECOND LEVEL

Vi)
£KTHS

STOCKHOLM, SWEDEN 2015

VETENSKAP
39 OCH KONST &%

N

Integrating Automated Security
Testing in the Agile Development
Process

EARLIER VULNERABILITY DETECTION IN AN
ENVIRONMENT WITH HIGH SECURITY
DEMANDS

ANDREAS BROSTROM

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION (CSC)

Integrating Automated Security Testing in the
Agile Development Process

Earlier Vulnerability Detection in an Environment with High
Security Demands

Integrering av automatiserad sakerhetstestning i
den agila utvecklingsprocessen

Upptack sarbarheter tidigare i en miljo med hoga sakerhetskrav

ANDREAS BROSTROM
<abros@kth.se>

DA225X, Master's Thesis in Computer Science (30 ECTS credits)
Degree Progr. in Computer Science and Engineering 300 credits
Royal Institute of Technology year 2015

Supervisor at CSC was Linda Kann

Examiner was Mads Dam

Employer was Nordnet Bank AB

Supervisor at Nordnet was Joakim Hollstrand

June 22, 2015

mailto:abros@kth.se

Abstract

The number of vulnerabilities discovered in software has
been growing fast the last few years. At the same time the
Agile method has quickly become one of the most popular
methods for software development. However, it contains no
mention of security, and since security is not traditionally
agile it is hard to develop secure software using the Agile
method. To make software secure, security testing must be
included in the development process.

The aim of this thesis is to investigate how and where
security can be integrated in the Agile development pro-
cess when developing web applications. In the thesis some
possible approaches for this are presented, one of which is
to use a web application security scanner. The crawling
and detection abilities of four scanners are compared, on
scanner evaluation applications and on applications made
by Nordnet. An example implementation of one of those
scanners is made in the testing phase of the development
process. Finally, a guide is created that explains how to use
the implementation.

I reach the conclusion that it is possible to integrate
security in the Agile development process by using a web
application security scanner during testing. This approach
requires a minimal effort to set up, is highly automated and
it makes the Agile development process secure and more
effective.

Referat

Integrering av automatiserad
sakerhetstestning i den agila
utvecklingsprocessen

Antalet upptéckta sarbarheter i mjukvara har ékat fort un-
der de senaste aren. Den agila metoden har samtidigt blivit
en av de mest populidra metoderna for mjukvaruutveckling.
Den beror dock inte sékerhet, och eftersom sdkerhet, tra-
ditionellt sett, inte ar agilt sa blir det svart att utveckla
sdker mjukvara med den agila metoden. For att kunna go-
ra mjukvaran sidker sa maste sékerhetstestning infogas i
utvecklingsfasen.

Syftet med det hér arbetet dr att underséka hur och
var sikerhet kan integreras i den agila utvecklingsprocessen
vid utveckling av webbapplikationer. Nagra sétt att gora
detta pa beskrivs i arbetet, varav ett ar att anvinda ett
verktyg for sdkerhetstestning. En jamférelse av hur bra fyra
sadana verktyg ar pa att genomsoka och hitta sarbarheter
utfors pa applikationer designade for att utvirdera verktyg
for sikerhetstestning, samt hos Nordnets egna applikationer.
Sedan beskrivs en exempelimplementation av ett av dessa
verktyg i testfasen av utvecklingsprocessen. Slutligen, tas
en guide fram som beskriver hur implementationen kan
anvandas.

Jag kommer fram till att det &r mojligt att inkludera
sikerhet i den agila utvecklingsprocessen genom att anvén-
da ett verktyg for sikerhetstestning i testfasen av utveck-
lingsprocessen. Detta tillvigagangssatt innebdr en minimal
anstrangning att inféra, ar automatiserat i hog grad och det
gor den agila utvecklingsprocessen sidker och mer effektiv.

Acknowledgments

This thesis describes my degree project conducted for the School of Computer Science

and Communication (CSC) at KTH Royal Institute of Technology. T would like to

thank everyone that has helped or contributed in any way and supported me and

my work. This has been a great experience, and I am very pleased with the results.
I want to direct a special thank you to the following people:

Linda Kann and Mads Dam, KTH, for their advice, support and feedback,
and for taking me on as a thesis student.

Joakim Hollstrand, Nordnet, for his advice, assistance, support and feedback,
and for taking me on as a thesis student.

Finn Hermansson, Nordnet, for his feedback, and for giving me the oppor-
tunity to do this.

Tasos Laskos, Arachni, for his assistance and advice with the final implemen-
tation.

Maja Rinnert, for all her love and support.

Contents

Glossary

1 Introduction

1.1 Preface e
1.2 Problem statemento oL
1.3 Purpose
1.4 Outline e
Background
2.1 About Nordnet
2.2 Agile software development oL oL
2.2.1 Continuous integration
2.3 Software testing
2.3.1 Approaches
2.3.2 Automation
2.4 Web application security L
2.4.1 Common web application vulnerabilities
2.4.2 Security testing approacheso
2.5 Agile security testing Lo L
2.5.1 Source code analysis tools
2.5.2 Vulnerability scanners
Approach
3.1 Prestudy
3.1.1 Evaluating approaches for agile security testing
3.1.2 Imterviewstudyo
3.2 Evaluating scanners Lo e
3.2.1 Gathering requirementso
3.2.2 Comparing scannerso
3.3 Testing o
3.3.1 Environment 000 Lo
332 Execution L

3.4 Integration and Implementation

s W oW W

0

10

12
13
13
15
18
19
21
22

3.4.1 Integration 33

3.4.2 TImplementation 34
3.5 Guide . ..o 35
4 Results 37
4.1 Prestudy e 37
4.2 Evaluating scanners Lo 38
4.2.1 Gathering requirementso L. 39
4.2.2 Comparing SCANNETS« v v v v v v v v v e 40
4.3 Testing o 45
431 WIVETo 45
4.3.2 WAVSEP . . . 48
4.3.3 Nordnet L 56
4.4 Integration and implementation o000 56
4.4.1 Integration 57
4.4.2 Implementation oo 59
4.5 Guide 60
5 Conclusions 65
5.1 Discussion Lo 65
5.1.1 Goals . . . o e 65
51.2 Results 67

5.2 Integrating Automated Security Testing in the Agile Development
Process 70
5.3 Recommendations oo 71
5.4 Futureworko 72
Bibliography 73
A WAVSEP results 79
A1 Arachnio 79
A2 Burp Suite 82
A3 OWASP ZAP 85
Ad w3af ..o 88

B Guide 91

Glossary

attack
A deliberate attempt to assault system security, evade security services or
violate the security policy of a system.

attack vector
A route or method used to get into computer systems by taking advantage of
known weak spots.

attacker

Someone, or something, that attacks a system by using different attack vectors.

build

A build refers to a row in a delivery pipeline. If one of the steps ends with a
failure, the whole build is marked as a failure.

CD
Continuous Delivery is an extension of CI below. The goal of this extension is
to ensure that the software can be released to production at any time.

CI

Continuous Integration is a software engineering practice with the goal that
all members of a team should integrate their work frequently.

delivery pipeline

A step-divided pipeline where each step is an activity in the CD (or CI), from
commit to finished product ready to be deployed. Each step in the pipeline
must succeed in order to reach the next step, and eventually the end.

exploit

An attack on a system that takes advantage of a particular vulnerability found
on the target system.

GLOSSARY

penetration testing

Performing an attack on a computer system with the intention of uncovering
potential vulnerabilities.

QA
Quality Assurance is the process of checking if a product under development
is meeting specified requirements. It is used to avoid and prevent mistakes or
defects in these products.

scanner

Short for vulnerability scanner, which is a program that scans a given system
to find any vulnerabilities, often used in penetration testing.

SDLC

System Development Life Cycle refers to the process of developing (plan-
ning, creating, testing and deploying) a system of software, hardware, or a
combination of both.

vulnerability

A security weakness or risk in a system that could allow an attacker to attack
the system and thereby compromise its integrity, availability, or confidentiality.

XSS

An abbreviation of Cross (X) Site (S) Scripting (S), which is a common attack
vector on web applications.

Chapter 1

Introduction

This chapter introduces the motivation behind this thesis, the problem statement,
the purpose and an outline of the contents.

1.1 Preface

This degree project aims to investigate how security can be integrated in the Agile
development process. The degree project is carried out at Nordnet Bank AB, which
is a small Nordic bank. Their main area of business is investments and savings, but
they also offer services in pension and banking [41]. They are fully web-based, and
therefore they have high web application security demands.

1.2 Problem statement

The use of an Agile [7] work flow has become more common within all kinds of
software development and there are many who claim that it works really well [32, 18,
26]. One of the features that has made agile development so successful is continuous
integration (CI) [24], which makes it possible to automate integration and thereby
further speeding up the process from idea to production ready code [24]. One major
flaw with the Agile development process is that it does not say anything on how to
achieve security; security is not even mentioned in the Agile Manifesto [7].

Today there are many companies that, like Nordnet, have adopted Agile, and
where security is highly prioritized. This way of working leads to security being
separated and disconnected from the development process into something that is not
Agile. Since security still has to interact with the development process this has led
to sort of a middle ground between the two processes; A development process that
is neither truly Agile nor fully secure [11]. To achieve a development process that is
both effective and secure a way of integrating security in Agile [55] is needed. There
are a couple of proposals on how that can be achieved [55], but it seems like none of
them can solve all problems, and either the proposals have not been implemented

3

CHAPTER 1. INTRODUCTION

(only theoretical solutions) or they have not proven to be as useful as suggested,
which has led to them not being used to a greater extent [55].

I have therefore chosen to investigate how security can be integrated in the
Agile development process, and more specifically; how can automated security tests
be included in the Agile development process in order to avoid vulnerabilities in
production?

1.3 Purpose

This thesis therefore intends to find a way to integrate security in the Agile develop-
ment process. Since Nordnet is working with CI and they are mainly developing web
applications, this will also be the main focus of this thesis, but the results should be
applicable to any Agile development process.

More specifically, the following things are addressed in the thesis:

e An investigation of how security can be integrated in the Agile development
process.

e An investigation of how and where automated security tests can be included
in CI within the Agile development process.

e Producing a guide for developers, telling them how to set up automated security
tests, and helping them to understand security implications and risks and
showing them how they can mitigate certain risks to reduce vulnerabilities.

In order to:
e Achieve a higher security awareness among developers.

e Create an easy and effective way for developers to verify that their code is
secure.

To my knowledge, no comparable efforts have been made to secure the Agile
development process by using an automated web application security scanner that
is seamlessly integrated in the delivery pipeline.

1.4 Outline

This thesis starts with an abstract that summarizes this thesis. After that there is a
small section where I take up some notable acknowledgements. A table of contents
follows to give an overview of the document. The rest of thesis consists of:

e A terminology section that includes abbreviations and terms regularly used in
the thesis.

1.4. OUTLINE

e The introduction in chapter 1. This is meant to introduce the reader to the
problem and purpose of this thesis, and present what the rest of the thesis will
cover.

e The background in chapter 2. It contains in depth theory needed to understand
the rest of the thesis.

e The approach is presented in chapter 3. It contains information about the
methods used when attempting to solve the problem posed in the introduction.

e The results are presented in chapter 4. It contains all results from the approach
chapter.

e The conclusions of the work are presented in chapter 5. It contains a discussion
about the purpose and the results of this thesis.

e The last section contains the references.

o After that comes the appendices. They include some of the results in a more
detailed form (see Appendix A) and a guide that was produced during this
thesis (see Appendix B).

Chapter 2

Background

This chapter reviews the theory needed to understand the problem statement of
the thesis and chapter 3. This includes information about: Nordnet, Agile software
development, software testing, web application security and agile security testing.

2.1 About Nordnet

Nordnet is a small bank in the Nordic region (Sweden, Denmark, Finland and
Norway) with its main office located in Sweden, Alvik [41]. Nordnet was founded
in 1996 and was then one of the first brokers in the Nordic region to offer online
trading. Since then Nordnet has grown to almost 400 employees. Their main area
of business is investments and savings, but they also offer services in pension and
banking. Today it is first and foremost an IT company in the financial industry
rather than a bank with an online presence. Security is always a high priority in
a bank and in this case a big part of that is IT security [40], and more specifically
web application security.

Banking is built around trust. Customers that deposit money to a bank trust
that they can later withdraw the same amount, they trust that nothing bad will
happen to their valuables while they are stored at the bank; they trust that their
bank is secure. Therefore, any security related incidents will generate a great deal of
badwill towards the bank, which means that they will lose customers. Banks are
also under strict regulations from inspection bodies (such as Finansinspektionen in
Sweden [22]) and any security related incidents could therefore also lead to additional
penalties, like fines. One could argue that security is more important to Nordnet
than to bigger banks, since losing customers and incurring fines will affect them
more. Since Nordnet operates in all four Nordic countries they need to follow the
regulations in all of them, which also gives them a reason to be extra cautious with
security.

Nordnet has several processes for handling security, such as risk analysis and
security testing through audits and penetration testing. Security testing is performed
by both an internal security team on Nordnet’s test environment, and by an external

7

CHAPTER 2. BACKGROUND

company on both Nordnet’s test environment and production environment. All of
these tests and audits occur frequently, but they rely on manual work and are not
well integrated in the development process, which is investigated in this thesis.

2.2 Agile software development

There are many different methods used to develop software. The focus of this thesis
is the Agile method, but in order to fully understand Agile it is first necessary to look
at what existed before Agile; the more traditional methods. The most widespread

traditional software development method that existed before Agile, and still does
today, is probably the Waterfall method [54].

Deploy

Figure 2.1. An overview of the SDLC according to the Waterfall method [54]

The system development life cycle (SDLC) according to the Waterfall method
can be seen in Figure 2.1. The core idea is that in order to develop good software
it is necessary to have built a good foundation for it, which in this case mean
requirements, documentation, design guidelines etc. The Waterfall method is highly
sequential, which means that one phase must be fully completed in order to move on
to the next. It also means that if something goes wrong in the Testing phase that
has to do with an unclear requirement you must start over from the Requirements
phase and go through all the phases again.

To cope with the problems of traditional methods, like the one mentioned above,
new methodologies appeared in the late 1990’s [2]. In 2001 a group of people that

2.2. AGILE SOFTWARE DEVELOPMENT

worked with some of these new methodologies met in order to see if they could find a
common ground. This led to the creation of The Agile Manifesto [7]. In short, Agile
software development is a group of software development methods that aim to be
lighter, faster and more efficient than traditional software development methods [4].
The manifesto recaps the ideology below [7]:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

Requirements

Testing

Figure 2.2. An overview of the SDLC according to the Agile method [2]

The SDLC according to Agile can be seen in Figure 2.2. The core idea is to reach
the delivery of software faster and then iteratively improving it by adding features
and tests [7]. This means that the time to market with the Agile method is much
faster than in the case with Waterfall, which can explain the numbers in Figure 2.3,
and the large adoption of Agile that we see today [18]. Requirements in the Agile
method are handled via user stories, which each contain a high-level definition of
a requirement containing enough information so that a developer can produce a
reasonable estimate for how much effort is required to implement it.

Another reason for the success of Agile software development is the ability to
start integrating a new system with existing ones from the start instead of waiting
until the new project is done, this is called continuous integration [24].

CHAPTER 2. BACKGROUND

Waterfall Agile

14%

42% @ Succesful
Challanged

@ Failed

Figure 2.3. A comparison of the outcome for projects using the Waterfall or the
Agile method in the CHAOS project database from 2002 to 2010 [58]

2.2.1 Continuous integration

Continuous integration (CI) is the practice of integrating code frequently during
development. It was first introduced by Gary Booch in 1991 [10] and later redefined
by Martin Fowler [24] to what it is today. CI aims to solve a problem that traditional
development methods have, where integration is a long and unpredictable process.
The core concepts of CI are automating the building, testing and deployment of
software. [24]

In CI every change to software (e.g. by a commit in a source code management
system) triggers a new build, which means that every change is not only built as a
standalone product, but also integrated, tested and verified. CI allow teams to build,
test and release their software on demand and if the cycle from change to deploy
is fast the teams can get fast feedback and therefore quickly correct anything that
might be wrong. This also means that there is always a way to quickly release a
fully tested version to production if it is needed.

CI has grown since its introduction, and today there are many companies that
offer tools that make CI easy to set up and use. One of the most popular tools is
Jenkins CI [31], which also happens to be the tool that Nordnet use.

Figure 2.4 shows how a typical project on Nordnet is configured in Jenkins.
It has a couple of steps, or phases, which must all be passed in order to complete
a build. Brief explanations of the different steps follow:

o Build and Package - This step will fetch the latest code (that triggered the
change), build the project, run all unit tests, and then package it.

e CI: Automatic tests - This step will deploy the project to an environment
called CI, e.g. if the project is a tomcat web application it will be deployed

10

2.3. SOFTWARE TESTING

Build Pipeline
Commit Build and Package ¢ Cl: Automatic tests ¢ QA: Tests ¢ Deploy to production
Pipeline 87bcfa2f317a.2 » 87bcfa2f317a.2 » 87bcfa2f317a.2 » 87bcfa2f317a.2
Apr 1, 2015 11:08:32 Apr1,2015 11:11:42 Apr1,2015 11:13:01 Apr1,2015 11:13:52
3 min 4 sec 1 min 14 sec 40 sec 3 min 4 sec
Pipeline mimeszses | 0 | amesser | riemanser | 7
Apr 1, 2015 10:33:04 Apr 1, 2015 10:36:02
2 min 48 sec 1 min 8 sec

Figure 2.4. A generalized overview of the delivery pipeline used for a project at
Nordnet. For more information about the layout of the image, see Jenkins CI [31]

to a tomcat server in that environment. This step also runs some integration
tests on the code deployed in the CI environment.

e QA: Tests - This step is much like the above, with the difference that the
project is deployed in another environment called TEST. It also includes
automated and/or manual QA testing on the code deployed in the TEST
environment.

e Deploy to production - This step deploys the project to the production
environment.

Nordnet uses an approach called continuous delivery (CD), which is a natural
extension of CI. When using CD all but the last of the steps described above are
automated, i.e. when Build and Package is completed it will trigger the next step
(CI: Automatic tests). When the QA: Tests step is complete, it will activate a button
that has to be manually pressed in order to continue the CD process and start the
Deploy to production step.

2.3 Software testing

The term bug was introduced in 1947 when a computer at Harvard University
crashed due to a moth that had flown into the machine and got stuck between a set
of relays. One of the goals of software testing is to find bugs. [49, Chapter 1]

The cost of fixing a bug is highly related to where in the process the bug is found
as can be seen in Figure 2.5. For example a particular bug might cost $100 to fix if
it is found in the testing phase but can cost millions of dollars if it is found when
the software has already been shipped to the customer. Two other goals of software
testing are therefore to find the bugs as early in the development process as possible
and to make sure that they get fixed. [49, Chapter 1]

11

CHAPTER 2. BACKGROUND

Cost to fix a bug related to when it is found

$1000+
Froduction
Test
3 $100
P Code
&
2
2
[} §10 Design

Specification
F1

Time when bug is found

Figure 2.5. The cost of fixing bugs related to where it is found. This figure is an
adapted version of the original from Building Security In [36]

Today there are many different approaches on how to perform software testing,
there are even development methodologies built around testing, like test driven
development [6]. In the following subsections different approaches to software testing
are presented, and a section about testing automation, but first some information
about things to watch out for.

Two of the biggest issues that can occur while testing are false positives and false
negatives. In software testing a false positive is when normal and expected behavior
is incorrectly identified as faulty, this means that the test case will fail when there is
no real error. This is an issue since if many errors are incorrectly reported they can
hide the real errors [48]. A false negative is related, but almost like the opposite, of
a false positive. It is when an error is not found or not reported by the tests when it
should have been, which can give a false sense of security [47].

2.3.1 Approaches
There are two approaches to software testing that are widely used [49, Chapter 4]:

e Static and dynamic testing
o White-box and black-box testing

Static testing is defined as examining or reviewing the code of the software to
test, trying to identify bad practices to verify that it is written correctly. Dynamic

12

2.4. WEB APPLICATION SECURITY

testing is defined as testing the software by using and running it, trying to validate
that it is correct. [49, Chapter 4]

White-box testing is related to static testing since it also targets the code of
the software. In white-box testing the tester typically executes specific parts of the
code to see if they work correctly. Black-box testing is similarly related to dynamic
testing as it tests the software when it is running. In black-box testing the tester
treats the software as a black box, she knows what it is supposed to do but she
cannot look at exactly how it operates. [49, Chapter 4]

2.3.2 Automation

When testing a newer version of a software, everything that was tested in the previous
versions must be tested again. This is not only time-consuming but also tiring and
error-prone. To solve this issue tools used for testing were introduced as a way to
code test cases that could be carried out by a computer, automated. [49, Chapter 15]

When the Agile software development methods became more popular the speed
of testing became more important and automated testing became popular (see sec-
tion 2.2). Some automated tests that are very popular today are:

e Regression tests - Tests that are introduced when bugs are fixed to make
sure that they will not reoccur. [34, Chapter 9]

e Unit tests - A test that is meant to test a small unit of code to ensure that
the particular unit has the desired function. A unit could for example be a
method, a class or a file. [34, Chapter 10]

o Integration tests - Tests that test a combination of two or more software
components, or units, together to find out if they work as intended. This could
mean testing anything from the integration between two methods to testing
the integration between the software and the production environment. [34,
Chapter 11]

2.4 Web application security

The web is growing, and many companies are moving more of their business to the
web. This is especially visible in the world of banking, where offices are closing down
and the amount of cash management is declining. Instead, customer services have
moved into interactive chat rooms, support email accounts and telephones, and cash
management is no longer necessary when we have online banking and credit cards.
As companies continue to increase their online footprint they also become a more
attractive target for attackers. All new software developed by Nordnet today is
either web applications, web-services or part web applications (hybrid applications),
although they still maintain some legacy applications. The biggest security concern
for Nordnet is to protect their customers, which means that they need to secure all

13

CHAPTER 2. BACKGROUND

applications that their customers can interact with. Therefore, this section and this
thesis will focus on the security of web applications.

Traditionally, the biggest issue when it comes to security seems to be that the
presence of security has been seen as a feature, something that was nice to have,
rather than regarding the absence of security as a bug [36]. This may seem strange
now, but it makes more sense when considering that when the Internet was born,
there was no such things as viruses or worms [57]. To defend against something that
you have no idea exists is one of the dilemmas of security, another is trying to find
and fix all possible vulnerabilities before an attacker can find and exploit them.

The attitude towards software security has shifted lately, mostly due to the big
number of discovered vulnerabilities (as can be seen in Figure 2.6) and the literature
that was written in response to that discovery [36]. As the IT sector keeps getting
bigger and the software is getting more and more complex, the issue of security is
also growing.

Vulnerabilities with CVE 2000 - 2014
g 000

£ 000

4 000
2000 I I

1998 2000 2002 2004 20086 2008 2010 2012 2014 2016

Number of vuinerabilities

Year

Figure 2.6. The number of vulnerabilities per year from January 2000 until December
2014 found in the National Vulnerability Database [39]

To try to solve this problem, Gary McGraw suggested an approach called
the Three pillars of security [36]:

e Applied Risk Management - The process of trying to identify, rank and
track risks. To classify the severity of vulnerabilities a system called CVSS [3§]
is used.

e Software Security Touchpoints - A set of best practices of how to integrate
security in the SDLC, and what can be done in each phase of development.

14

2.4. WEB APPLICATION SECURITY

« Knowledge - The process of gathering, structuring, and sharing security
knowledge to help provide a solid foundation for security best practices.

Web application security includes security of websites, web applications and web
services. The majority of vulnerabilities in web applications come from bad coding
practices, code complexity, flawed coding (bugs) and lack of testing [36, Chapter 1].

2.4.1 Common web application vulnerabilities

To keep track of vulnerabilities and other information in web application secu-
rity there is an organization called the Open Web Application Security Project
(OWASP) [46]. OWASP is a “worldwide not-for-profit organization focused on
improving the security of software” [46]. Since it started in 2001 it has produced
guides on how to approach development [43] and testing [44] with security in mind,
kept track of the major threats to web applications and provide tips and tricks on
how to mitigate and get rid of the vulnerabilities.

The OWASP top 10 project [45] lists the ten most critical vulnerabilities found
in web applications. This list is based on statistics gathered by several organizations
and companies [63, 23]. In the book Introduction to Computer Networks and
Cybersecurity’ [65] the project is described like this:

“The OWASP Top Ten represents a broad consensus in identifying the most
critical web application security flaws. An organization must begin by ensuring
that their web applications do not contain these flaws, and adopting the OWASP
Top Ten is the first step toward changing the software development into one that
produces secure code.” [65, Chapter 26]

Web applications can contain both flaws found in regular applications, such as
access control or authorization flaws, and some specific to web-based applications,
such as cross-site scripting (XSS). The ten major threats against web applications
identified in 2013 by OWASP [45, 37] are presented in a list below, and then their
relevance will discussed from the perspective of Nordnet. Specifically, the list will
contain descriptions of the vulnerabilities, information on how the vulnerabilities
manifest themselves and how they can be tested.

e Injection - The most common types of injection today are SQL injection and
OS command injection. An injection occurs when untrusted data from a user
is interpreted by a server as a command or a query. This type of vulnerability
enables a user to execute arbitrary code on the server without any authenti-
cation. These flaws are generally easy to discover when examining code, and
harder to discover with automated testing. However, they can be tested by
locating places where user submitted data is injected into SQL queries or in
OS commands, and trying to inject untrusted data to those places and see
what happens. An example of this is to include double or single quotes in data
that is later used to construct an SQL query, in hope of breaking out of the
query. If this test leads to any form of exception or error it usually means that
a vulnerability has been found.

15

CHAPTER 2. BACKGROUND

e« Broken Authentication and Session Management - When authentica-
tion or session management is implemented poorly, allowing an attacker to
pose as valid user by compromising passwords, session tokens or other secrets.
Some examples are: storing passwords in clear text, allowing easily guessable
passwords, storing the session ID in the URL or sending any form of credentials
over unencrypted connections. As these flaws are highly dependent on the
implementation, they are often hard to find. A session ID stored in the URL
is an example of something that is easy to test both manually and with an
automated approach.

o Cross-Site Scripting (XSS) - Allows an attacker to execute malicious
JavaScript code on a user’s client. This happens when the user’s client displays
a value that is not properly escaped. This can be used to steal sensitive data
such as credit card numbers, session cookies and social security numbers. XSS
flaws are normally divided in two categories depending on where the untrusted
data is used; on the server or on the client. Generally, XSS on the server is
easy to test using e.g. code analysis while testing for XSS on the client is hard.

e Insecure Direct Object References - When exposing a direct object
reference to the user, without any access control checks. This means that
a user can modify the reference to access other, possibly unauthorized
data. Some examples of this could be when a file, directory or user id is
part of the URL. These flaws can easily be tested by manually changing
parameter values, e.g. by changing presentation.ppt to employees.xls
in open.php?file=presentation.ppt.

e Security Misconfiguration - Some software comes with default accounts
and sample files, such as configuration files, applications or scripts. If these are
left unattended they may provide means to an attacker to be able to bypass
authentication or access sensitive information. Some systems also come with
debug information turned on, which could be of great help for an attacker.
These flaws can be tested efficiently by automated tools that can detect use of
default accounts, unused services or vulnerable sample files.

e Sensitive Data Exposure - This happens when an application does not
protect sensitive data sufficiently, such as passwords, session IDs, or credit card
numbers. The most common such flaw is to not encrypt sensitive data both
at rest and in transit. This vulnerability enables attackers to conduct crimes
like identity theft or credit card fraud. It is easy to test whether sensitive
data is encrypted or not, both in transit and at rest. It is harder to test if the
encryption used is “strong enough” since strong is a relative measure in this
case.

e Missing Function Level Access Control - When the functions of an
application are not protected enough. This happens if an application fails to

16

2.4. WEB APPLICATION SECURITY

perform an authentication or authorization check for a specific function or
e.g. if the application unintentionally exposes an internal function via a user
controlled parameter. This is often the result of bad underlying application
logic. As with insecure direct object references these flaws can easily be
tested by manually changing parameter values, e.g. by changing 123 to 124
in info.php?account=123.

o Cross-Site Request Forgery (CSRF) - When an attacker forces a victims
browser to perform a forged HI'TP request. This request is controlled by
the attacker and sent by the victim, containing any automatically included
authentication information. A vulnerable application will see the forged request
as a valid request from the user. This flaw is easily testable by using either a
code analysis or an automated approach.

e Using Components with Known Vulnerabilities - A system or appli-
cation usually uses multiple third party libraries, frameworks, open source
software, or other components. Each of these components can potentially have
a flaw that makes them vulnerable, which in turn can compromise anything
that uses that component. Using components with known vulnerabilities in an
application may therefore enable a large range of possible attacks. Generally
it is easy to test this flaw by checking all components against a database that
contains vulnerable component versions.

e Unvalidated Redirects and Forwards - When an attacker can redirect a
user to an untrusted site using functionality at a trusted site. This happens
when the application uses untrusted data to determine the destination page
of a redirect. This vulnerability exploits the trust a user has in a site and
enables attacks such as phishing. Unvalidated redirect flaws can be tested
easily by identifying all URLs where it is possible to specify a full URL, while
unvalidated forwards are harder to test since they target internal pages.

Relevance for Nordnet

As mentioned earlier, the overall security concern for Nordnet is to protect their
customers, and their customers trust (see section 2.1). Therefore the following items
are important to protect:

e Any applications that a customer can interact with.
e Stored and potentially sensitive customer data.

o Customer assets (money and holdings).
In terms of vulnerabilities, any vulnerability that has a direct impact on Nordnet

can be seen as more important since it affects the trust of their customers directly.
The vulnerabilities with direct impact according to Nordnet are: Injection, broken

17

CHAPTER 2. BACKGROUND

authentication and session management and sensitive data exposure. How-
ever, flaws in any of the ten times described above can lead to severe consequences,
and hence all of them are important to Nordnet. The security concerns of Nordnet
can be described in terms of the vulnerabilities in the list above:

e Three of the vulnerabilities directly affects user trust: Cross-site scripting

(XSS), cross-site request forgery (CSRF) and unvalidated redirects
and forwards.

XSS and unwvalidated redirects and forwards exploit the trust that a user has in
a website. In the case of XSS this leads to malicious code being executed on a
trusted site and in the case of unvalidated redirects a trusted site is used to send
a user from a trusted site to a malicious site. A CSRF vulnerability exploits the
trust that a user has in its browser. However, if a trusted website is vulnerable
to CSRF, the trust that the user has for that website is affected as well. All of
these three vulnerabilities can use social engineering to succeed, often to trick
the user to click a link crafted by an attacker.

Five of the vulnerabilities specifically deals with getting access to different types
of sensitive data: Broken authentication and session management, in-
secure direct object references, security misconfiguration, sensitive
data exposure and missing function level access control.

If sensitive data is leaked it damages, or possibly breaks the user’s trust, which
means that these vulnerabilities also affects trust, but indirectly. Broken
authentication and session management relies on finding sensitive data to get
further into a system, insecure direct object references and missing function
level access control can both be used to access sensitive data, sensitive data
exposure is self-explanatory and security misconfiguration can cause one of
the four other vulnerabilities. All of these five vulnerabilities can be seen as
stepping stones that enable an attacker to get further into a system.

The two remaining vulnerabilities are: Injection and using components
with known vulnerabilities.

Using components with known vulnerabilities is never a good idea since this
can cause other vulnerabilities, including the others in OWASP top 10. Using
such components may also be seen as a sign of ignorance, which also affect
trust. Injections are one of the worst kind of attacks against web applications
since an attacker using injections may not only get access to sensitive data,
but she may also corrupt or crash systems.

2.4.2 Security testing approaches

Tied to each category of vulnerabilities in the OWASP top 10 project is some
additional information on how an attacker can exploit them, what kind of impacts
that exploit can have on a technical and a business level, and most importantly,

18

2.5. AGILE SECURITY TESTING

how such an exploit can be prevented. Apart from these there are also some more
general guidelines on how to achieve a secure SDLC with security testing [44].

There are a few different ways to approach security testing. The most common
approaches to identify vulnerabilities in an application are either by looking at its
source code, or by analyzing it while it runs. A third alternative is to combine the
two approaches, and therefore the three biggest categories of Application Security
Testing (AST) are [21]:

o Static Application Security Testing (SAST) - Security specific static
testing. Tests the source code of an application by trying to identify bad
code or bad coding practices. This is sometimes called source code analysis or
review [44].

o Dynamic Application Security Testing (DAST) - Security specific dy-
namic testing. Tests the application as the customer or consumer sees it, by
trying to breach or break it. This is sometimes called penetration testing since
the goal is discover potential vulnerabilities by penetrating the defenses of the
application [44].

o Interactive Application Security Testing (IAST) - A combination of
SAST and DAST that can both look at the source code and verify any findings
by performing an attack on the application directly [21].

2.5 Agile security testing

Due to the recent explosion in vulnerabilities shown in Figure 2.6, security testing
has become the most important type of testing. Organizations have started to
regard security differently since they have realized that the money they could save by
eliminating vulnerabilities outweighed the money that they could earn by developing
a new feature [55], as suggested in section 2.3. At the same time the web is growing,
and with it the number of web applications made within an agile development
process. This poses a conflict since security testing is often a time consuming and a
quite tedious process that relies heavily on manual verification, and therefore it is not
well suited for the Agile development process. As presented in section 2.2, there are
data suggesting that the Agile method is superior to the most well-used traditional
software development method; the Waterfall method. Yet, many companies still
hesitate to adopt the Agile method due to its lack of security; security is not even
mentioned in the Agile Manifesto [7]. A big problem is that we are used to a
security process adapted for software development processes based on the Waterfall
method, which means that it is rigorous and slow. Such a process can not possibly be
introduced in the Agile development process since it goes against the Agile Manifesto.
What is more, Agile focuses on partial deliveries, and security traditionally needs
to be tested on a finished product [55]. Therefore, security must be dealt with
differently to fit in the Agile development process.

19

CHAPTER 2. BACKGROUND

Many have tried to introduce security in the Agile development process, but so
far there is not much that has caught on. There are studies suggesting that security
can be included as early as in the requirements phase by adding what they call misuse
stories [32] to the original user stories. These misuse stories are designed to capture
malicious use of the application and hence they can catch potential vulnerabilities
already in the requirements phase. This suggestion looks promising, especially
considering how much money there is to be saved according to Figure 2.5. However,
authors of misuse stories and developers that need to implement them need to have
a great deal of security knowledge for this to work out, which is not likely the
case. Other studies reach conclusions that are highly focused on their particular
conditions [59], which sadly helps very little in other settings.

Research about a secure agile development process is just getting started with
the First International Workshop on Agile Secure Software Development being held
later this year (Aug 2015) [3]. A recent presentation from a member of OWASP [46],
suggests some novel ideas on how to achieve security in the Agile development
process [11]. Tt is suggested that security can be integrated in the automatic build
process by performing either soure code analysis or automatic security testing using
a vulnerability scanner, which can be seen in Figure 2.7. Other sources also suggest
using tools (source code analysis tools or vulnerability scanners) to get security into
the development process [36].

D

e c Tests

v o

o m Build Deploy

I m trigger to prod
i

° t

p

Source Code Automatic

Analysis security test

Figure 2.7. Suggestions on where and how to integrate security in an automatic build
process [11]

These suggestions have been made possible since security testing is catching on
to the automation trend of software testing (see subsection 2.3.2). Some of the most
popular manual scanners used for penetration testing have recently been upgraded

20

2.5. AGILE SECURITY TESTING

to support automated scans [51, 8] and new fully automatic scanners have begun
popping up in the last few years [1, 33]. Both suggestions in Figure 2.7 are theoretical
but a company called Continuum Security [64] has come a long way while trying
to develop and implement approaches based on these. However, the approaches
presented by them so far require quite some work to use, and test cases are still
required to be written, which means that a great deal of security knowledge is still
required.

The main components of the two suggestions mentioned in Figure 2.7 are pre-
sented and discussed in greater detail below. These two are: source code analysis
tools and vulnerability scanners. Their advantages and disadvantages will also be
addressed with a focus on web applications, since that is the main focus of Nordnet.

2.5.1 Source code analysis tools

Source code analysis tools are tools used to perform SAST, i.e. analysing software
source, or sometimes binary code for known vulnerabilities [36, Chapter 4]. The tools
considered for this thesis are automated, to fit the Agile method, and have support
for web application languages, since that is the main focus of Nordnet. Source code
analysis tools typically consist of multiple components: one component that looks
for common vulnerabilities by using methods such as taint analysis and data flow
analysis [28], another component that checks the code style, e.g. PMD [50], and
a third component that will try find common bugs, such as FindBugs [61]. The
methods used by a source code analysis tool are usually derived from compilers and
hence can be seen as an additional compiler in the development process since it
will also parse and analyze the source code, even though it does not produce any
binaries. These tools analyze the code by trying to match it logically or lexically
against specific patterns and rules from a predefined list. This makes it possible to
adapt source code analysis tools to a specific system and it often means that the
analysis is fast, although this also depends on the number of checks to be performed
and what type of methods are employed. A source code analysis tool should be
executed regularly [36, Chapter 4] in the development stages of the process, either
directly on the developers machine or in the build process.

The main advantages of using source code analysis tools are that they scale
well, they give very fast feedback [36, Chapter 4] and they can generally handle
many problems as discussed above. Since most errors are independent of the kind of
software that is developed, and more dependent on the code these tools scale well
and can be run on a lot of different software. Since they can be run frequently and
repeatedly once set up, and since they can run on an unfinished application they can
give very fast feedback to developers, which can mean saving a great deal of money
as shown in section 2.3. As discussed above a source code analysis tool can deal
with many different types of problems, such as finding bugs, checking code style and
detecting common vulnerabilities. This can be seen as a disadvantage if the tool
becomes too unfocused. Tools that are able to deal with many types of problems
often look very tempting to use but they are often less effective than specialized

21

CHAPTER 2. BACKGROUND

tools solving the same problem, so this could be a potential disadvantage for the
source analysis tools.

The main disadvantages of using source code analysis tools are that they are
highly dependent on what programming language is used and what code style a
certain programmer has, and that they have a hard time proving if an identified
issue is an actual vulnerability. All these disadvantages manifest themselves through
the false positive rate of the source code analysis tool, which is usually very high [28].
Creating a set of rules that all developers can agree on and follow is hard since code
style is typically heavily opinionated, and such an endeavour may take a long time
since there are a lot of settings to tune.

2.5.2 Vulnerability scanners

Vulnerability scanners are tools used to perform DAST), i.e. scanning software for
known vulnerabilities [36, Chapter 6]. The scanners considered for this thesis are
automated, to fit the Agile method, and are used to scan web applications, since that
is the main focus of Nordnet. These are called web application vulnerability scanners
and they generally consist of two components: a crawling component and a scanning
component. The crawler is executed first and its goal is to map the web application.
It is initialized with some initial URLs (endpoints) for a web application, which it
will visit while recording new URLs and potential points where data can be injected,
such as GET parameters or HTML forms. The scanning component is further
divided in to two modes; active and passive. Active scanning is sometimes also
called penetration testing and its purpose is to actively penetrate a web application
while analyzing its response. It will typically be executed after the crawling is
done since it uses the information found in the crawl, but it can also run alongside
the crawl, attacking the web application at the same rate it is discovered. Passive
scanning on the other hand is when the scanner observes use of an application and
tries to detect unsafe practices, such as trying to list directories and identifying
any unsafe technologies used. A passive scan will typically run during the crawl by
investigating the requests.

The main advantages of using a vulnerability scanner are that they are easy
to use, they have a high level of automation and they are able to scan a web
application independently of how it is implemented. A scanner can scan multiple
web applications for known vulnerabilities with the click of a button, and it is
typically much faster than a human trying to find vulnerabilities manually. However,
the biggest limitation of vulnerability scanners are that their false negative and false
positive rates are high compared to manual testing performed by a human. These
high rates have been observed in various previous benchmarks [13, 14] and it seems
like they are highly coupled with the scanners ability to crawl [17].

Vulnerability scanners target known vulnerabilities, just like antivirus software
target known viruses. This is an advantage when it comes to regression testing
but it also means that they are unable to find new vulnerabilities, and that is one
of the reasons for their relatively high false negative rates. Scanners rely on their

22

2.5. AGILE SECURITY TESTING

creators knowledge and skill, and on a steady stream of updates to their detection
abilities to be able to keep the false negative rates at bay while being able to detect
the latest vulnerabilities. For scanners, certain types of vulnerabilities are harder
to detect than others since a scanner cannot foresee every possible variation of
a vulnerability. Many scanners will therefore mark cases of which it is unsure as
potential vulnerabilities that require further verification by a human. Historically,
one major limitation of vulnerability scanning is that it usually represents a too-
little-too-late attempt at security since it is performed at the end of the SDLC [36,
Chapter 6].

One thing to watch out for when testing with web application vulnerability scan-
ners is that since they test over the web they are limited by the network between
the scanner and the web application, and any other connections that the web ap-
plication might have. The network can inflict random errors during testing that
can sometimes give misleading results, and although many popular scanners have
countermeasures for such potential issues it is something to watch out for when
testing.

23

Chapter 3

Approach

This chapter presents the methods used to investigate the problem posed in sec-
tion 1.2, and the reasoning behind why these methods are chosen. This includes
a pre study containing an evaluation of the background and an interview study, a
section on evaluating vulnerability scanners, a section on testing vulnerability scan-
ners, a section on integrating and implementing one of the scanners in the delivery
pipeline at Nordnet (see Figure 2.4), and finally a section about producing a guide
for Nordnet.

3.1 Pre study

To investigate the problem posed in section 1.2 an evaluation of the material in the
background, targeting agile security testing has been be performed. After this an
interview study has been planned and conducted to find out the requirements of
Nordnet.

3.1.1 Evaluating approaches for agile security testing

Two proposals on how to integrate security in the Agile development process are
presented in section 2.5; using a source code analysis tool or using a vulnerabil-
ity scanner. Neither of these two proposals are sound, which means that although
both of them are designed to find vulnerabilities there is no guarantee that the
analysis tools or scanners can find all vulnerabilities. For each of the proposals there
is a section explaining them in greater detail (subsection 2.5.1 and subsection 2.5.2),
which contains some general information about how they work and what their
strengths and weaknesses are.

Comparing the two approaches, source code analysis yields a lower false negative
rate overall, which is desirable, but it usually also yields a higher false positive
rate. This means that source code analysis requires more manual verification
than automatic security testing with a scanner. To integrate security in the Agile
development process, security must itself become agile as addressed in section 2.5, and

25

CHAPTER 3. APPROACH

since manual verification hinders automation the use of a scanner is a more suitable
approach. Web applications can be built using different styles, frameworks and
programming languages. Automatic security testing with a scanner can test all types
of web applications, since a scanner is independent of what programming language
is used whereas source code analysis is not. Each source code analysis tool supports
a handful of programming languages at most, which can make it impossible to find
a tool that can test all web applications at Nordnet. This means that employing
automatic security tests by using a scanner is the best approach in this situation as
well. Overall, this comparison implies that a web application vulnerability scanner
is better suited for the context of developing secure web applications using the Agile
model at Nordnet.

In Figure 2.7, it is proposed that automatic security testing with a vulnerabil-
ity scanner can be integrated in the testing phase in an automatic build process.
The process is different on Nordnet (see Figure 2.4), and to find a good place to
integrate a scanner in their delivery pipeline more information is needed. Additional
information about what vulnerabilities are important to Nordnet is also needed
since scanners come in many different flavours that target different vulnerabilities.

3.1.2 Interview study

An interview study has been conducted in order to obtain information about the
security requirements specific for Nordnet, and to determine the general security
knowledge at Nordnet. Additionally, the interviews are used to find out what the
requirements are for a method to fit in the Agile development process at Nordnet, i.e.
any information needed to choose a scanner and decide how and where to integrate
it in the delivery pipeline at Nordnet.

The interviews has been performed according to the semi-structured method.
According to this method a set of themes or a template of open ended questions
are first created and later adapted to each interviewee during the interview [5,
27]. This allows for planning and conducting interviews with people of different
backgrounds and experience. The semi-structured interview is very much controlled
by the experience of the interviewee, and this means that the interviewer effects can
be reduced [16].

Since security affects everyone in the development process, the target group for
the interview consists of developers (main target group), quality assurance (QA)
engineers and other people involved in the delivery pipeline.

Developers are in the target group since they are the main target for this thesis.
Ultimately it is they who will have to modify their projects and set everything up so
that the automated scanning can run. It is also they who will see the results of a
scan first, and they who will have to verify and fix most of the issues that are found
while scanning. There is not enough time to interview all developers, and therefore
interviews has also been conducted with some people with the scrum master role.
Since they lead teams of developers they can hopefully help with estimating the
security knowledge of their teams.

26

3.2. EVALUATING SCANNERS

QA engineers are in the target group because it is their responsibility to ensure
quality of software, which also involves security. This means that they have the final
say if an issue must be fixed or if it can be ignored (e.g. a false positive [48]). They
are also highly involved in the overall delivery pipeline and as such they are possible
users of the scanner, its outcome and/or the guide.

The rest of the people in the target group are responsible for the delivery pipeline.
Since the scanner will probably be integrated somewhere in that delivery pipeline,
and since they decide what goes or not, their suggestions and insights might be
valuable.

The interview study was used in order to find out:

e The level of security knowledge of the target group - To know what level
the security information should have, which will be included in the guide.

e What security requirements and concerns that Nordnet have - To
pinpoint what type of vulnerabilities and security risks that are important to
Nordnet and how they rank these.

e How Nordnet works with security today - To find out positive and
negative aspects in their current way of working with security.

o What systems / frameworks / programming languages are used at
Nordnet - To get requirements on what types of vulnerabilities that a scanner
should be able to test for.

e How security can be integrated in the Agile development process at
Nordnet - To find constraints and possible suggestions for this work for the
specific implementation of the Agile development process at Nordnet. Since
they are the experts on their process they will have valuable insights to share.

e What expectations the interviewees have on a possible future solu-
tion - To get additional information on where in the process a security solution
could be integrated, and how it could be implemented.

3.2 Evaluating scanners

There are many web vulnerability scanners available on the market [14], and the
goal of this section is to reduce that amount to something manageable. To do this,
requirements for a scanner specific to Nordnet has been produced. These require-
ments, and the requirements obtained from the interview study in subsection 3.1.2,
were then used to compare scanners.

Evaluations and benchmarks of scanners often express the capabilities of vulner-
ability scanners by what attack vectors they support [13, 14]. Comparing scanners
based on which attack vectors they support is a good way to quickly sift through a
big number of scanners. However, a weakness with this type of comparison is that at-
tack vectors can be supported to different degrees. If a scanner supports an attack

27

CHAPTER 3. APPROACH

vector, it simply means that the scanner might be able to find some vulnerabilities
connected to that vector, but maybe not all. Since evaluating scanners is not the
main contribution, or main goal of this work, that weakness has been disregarded in
this initial sifting of scanners, and handled in the next section where scanners are
tested.

3.2.1 Gathering requirements

In order to find what requirements are important for a scanner, two lists of im-
portant attack vectors has been compared to the security concerns of Nordnet
(gathered from subsection 2.4.1 and the results of the interview study in subsec-
tion 3.1.2). As mentioned in the background chapter, a vulnerability scanner can
not test all vulnerabilities described in OWASP top 10 (see subsection 2.4.1), e.g.
a web application vulnerability scanner can never determine if user credentials are
stored securely in a database. Therefore, the requirements has been based on one
list that contains “a base set of wvulnerabilities that a web application security
scanner must be able to identify if it supports the technology and languages in which
the vulnerability exists” [9]. However, since that list of attack vectors is quite old
(published in 2009), another list of important attack vectors from a recent benchmark
evaluating 63 scanners was also used [14]. Using both of these ensures that the
requirements consist of both basic and recent attack vectors. These attack vectors
were then checked against the security requirements of Nordnet to create a list of
requirements for a scanner adapted to Nordnet.

3.2.2 Comparing scanners

As mentioned above, there are many web vulnerability scanners available on the
market [14]. 20 scanners has been picked out from a recent benchmark [14] to
obtain a starting point for further comparison. These scanners are chosen according
to the number of attack vectors they support in that benchmark, since a scanner
that supports many attack vectors has a higher chance to fit in this context. After
that, the list of scanners is reduced based on the requirements from the previous
subsection, and on the following:

e That the scanner has support for the technology at Nordnet - This
is important since the scanner will ultimately be used at Nordnet. The scanner
should support their input methods (such as HT'TP GET, XML, etc.) in
order to communicate with their web applications. It should also support their
authentication method(s) so that web applications that require authentication
can be scanned.

e How the scanner handles the general problems with vulnerabil-
ity scanners mentioned in subsection 2.5.2 - Handling these problems
could mean: having a lower false positive rate, having a lower false negative

28

3.3. TESTING

rate, being able to detect new vulnerabilities or being better adapted to new
technology.

e How much the scanner costs - This is important since a scanner can cost
a great deal, both to buy and to use. The scanner may come with an expensive
payment model, it may be unable to find vulnerabilities that can be exploited
by attackers and therefore incur costs or it can be poorly adapted and therefore
have a high maintenance cost.

3.3 Testing

Since the plan is to integrate and implement only one scanner, the reduced list
of scanners from subsection 3.2.2 has been tested and compared more thoroughly.
Both their crawling and detection abilities has been tested, and the latest version of
each scanner was used when testing.

3.3.1 Environment

To test the scanners in a reliable way, they have been compared on deliberately
vulnerable applications [15, 62, 35]. Such applications are designed to be vulnerable
and they have a fixed set of vulnerabilities, which is helpful since it allows easy
tracking of false negatives. Some of these applications also provide false positive test
cases that can be used to test the accuracy of scanners. A general drawback of using
deliberately vulnerable applications is that they are publicly available, which means
that vendors of vulnerability scanners can cheat, and adapt their scanners to perform
well on those applications [17]. However, this form of cheating can be avoided when
testing, by carefully picking the applications so that they support a wide range
of vulnerabilities. Because, if they support a wide range of vulnerabilities they can
be seen as general enough to represent most applications. If a scanner performs
well when scanning such an application, it will probably also perform well on other
applications, even if it was adapted to perform well on that specific application.

Another drawback when using deliberately vulnerable applications when test-
ing scanners, is that they are designed as training grounds for humans (e.g. We-
bGoat [35]). Such applications typically contain hints and systems to keep track
training progress, which makes them less than ideal when testing automated vulnera-
bility scanners. Luckily, there are also deliberately vulnerable applications specifically
designed to evaluate scanners on: the Web Input Extractor Teaser (WIVET) [62]
and the Web Application Vulnerability Scanner Evaluation Project (WAVSEP) [15]
are two examples. Since a vulnerable application contain a fixed set of vulnerabilities,
as mentioned above, they will not necessarily fit the all the security concerns of
Nordnet, and therefore the scanners have also been tested on applications provided
by Nordnet. This will not only make sure that the scanners work on Nordnet, but it
also compensates for the potential cheating mentioned above.

29

CHAPTER 3. APPROACH

WAVSEP and WIVET are both used in a previous benchmark [14], but the
results still needs to be verified since many of the scanners have been updated since.
Rerunning the tests also gives greater insight into how different scanners work, and
how they can fit in the development process, which is investigated in the next section.
This thesis therefore contributes new data, and since testing were also performed on
real applications at Nordnet, the testing results can also be used to estimate the
accuracy and robustness of WAVSEP and WIVET.

WIVET

WIVET [62] is an application designed to test the crawling ability of a scanner
(see subsection 2.5.2), i.e. how well a scanner performs when trying to discover its
target, which it does by finding input vectors (e.g. URLs). This is important to
measure since finding more input vectors increases the attack surface of the scanner.
WIVET v4 has been used for testing since it is the latest version available when
when this is written.

WIVET includes a broad array of crawling tests (56 different) and it has logic
for keeping track of the statistics for each scan. Since WIVET uses a session cookie
to keep track of ongoing scans [62], the scanner must have some kind of session
handling to run WIVET successfully.

WIVET is included in this test because crawling is a critical ability for any scanner,
and it has a big impact on overall performance [17]. A scanner without any crawling
abilities would have to be provided with all valid URLs within the application being
scanned, and that is not feasible since a list of all valid URLs must be regenerated /
modified each time the application changes.

WAVSEP

WAVSEP [15] is an application designed to test the detection abilities of a scanner,
i.e. how many of the known vulnerabilities it can find, how many it misses (false
negatives) and how many of the false positive test cases it reports as vulnerable.
Testing the detection abilities of a scanner will inevitably also test its crawling
abilities (see subsection 2.5.2), which means that testing on WAVSEP is also a good
complement to testing on WIVET. WAVSEP contains a large collection of test cases
for different categories of vulnerabilities (see below and subsection 2.4.1). WAVSEP
was created by Shay Chen [60] for his evaluation of web application scanners.
WAVSEP v1.5 has been used for testing since it is the latest version available when
when this is written.

WAVSEP includes the following test cases (contains cases that use both HTTP
GET and HTTP POST) [15]:

o Local File Inclusion/Directory Traversal/Path Traversal - 816 test
cases and eight categories of false positives.

e Remote File Inclusion - 108 test cases and 6 categories of false positives.

30

3.3. TESTING

o Reflected Cross Site Scripting (RXSS) - 64 reflected test cases, 4 DOM
based cases and 7 categories of false positives.

e SQL Injection - 80 error-based test cases, 46 blind test cases, 10 time based
test cases and 10 categories of false positives.

e Unvalidated Redirect - 60 test cases and 9 categories of false positives.

« Old, Backup and Unreferenced Files - 184 test cases and 3 categories of
false positives.

WAVSEP is included because it has a large number of test cases in different vul-
nerability categories, and it is designed for the specific purpose of evaluating vul-
nerability scanners. All the vulnerabilities supported by WAVSEP, except for the
two relating to file inclusion, are featured in the OWASP top 10 list, and therefore
important to Nordnet (as discussed in subsection 2.4.1). However, the remaining
two vulnerabilities can be seen as members in the categories security misconfiguration
and sensitive data exposure, and as such they are also important to Nordnet.

Since there is data available from old tests [14], they can be used to verify the
testing results. Access to old test data is important in this case because it can help
reduce potential cheating of vendors mentioned above. Since WAVSEP v1.5 was not
publicly available before the previous benchmark it probably also means that the
results from it are unbiased.

Nordnet

To make sure that the results from WIVAT and WAVSEP are reliable, and applicable
to Nordnet, scanners have also been tested on applications provided by Nordnet. A
great deal of the results in this thesis are ultimately going to be used at Nordnet
and therefore it makes sense scanning there as a final test. As mentioned in the
background (see section 2.1), Nordnet already scans their applications in test and
production environments, using both automated and manual scans. These scans will
find vulnerabilities that can be used to test the remaining scanners on. Testing on
known vulnerabilities helps with catching potential false negatives reliably.

3.3.2 Execution

The testing has been performed in a virtual machine environment. Two virtual
machines has been set up: one that houses the scanner (Host S) and one that house
the applications used to test the scanners on (Host T). The specifications of those
machines are:

e Host S

— OS - Ubuntu 14.04.2 LTS
— Architecture - i686

31

CHAPTER 3. APPROACH

— Memory - 3 GB
— Processor - Intel(R) Xeon(R) CPU E3-1245 v3 @ 3.40GHz

e Host T

— OS - Red Hat Enterprise Linux Server release 6.6 (Santiago)
Architecture - x86 64

— Memory - 1 GB

— Processor - Intel(R) Xeon(R) CPU X7460 @ 2.66GHz

These specifications are not important for the testing since raw performance is
not measured, and therefore e.g. time is not a critical aspect. They are supplied for
reproducibility.

The scanners have first been tested on WIVET, then on WAVSEP, and lastly on
applications provided by Nordnet. How each of these tests has been carried out is
presented below:

WIVET

To ensure correct measurements on WIVET, each scanner has been experimented
with, and any features that can be used to increase their score has been used.
This is done to achieve the highest possible score, and to make sure that the
comparison between the scanners is fair. When a good configuration has been
found, WIVET has been scanned three times by each scanner to help catch potential
inconsistencies. Inconsistencies can be caused by e.g. network troubles as mentioned
in subsection 2.5.2. Since WIVET uses session cookies to track and rank each scan,
each scanner also needs a way to set a session cookie. To simplify the configuration
of each scanner, the source code of WIVET has been modified slightly by removing
some of the logout links (100.php). This is done so that a scanner will not click such
a link by mistake, since that will cause a session reset, and WIVET will no longer
be able to track that scan.

WAVSEP

A similar approach to the one described above has been used when scanning WAVSEP.
The following has been done to ensure that each scanner does as well as possible:

e If a scan does not identify all vulnerabilities in a category on the first try, the
scan was restarted. This was done to help catch potential inconsistencies, as
mentioned in subsection 2.5.2 and in the WIVET section above.

e Each subcategory was scanned one at the time to avoid overloading the server,
and to make the scans faster and easier to reproduce.

e Each scan was configured to only have the applicable checks for the specific
test case active, to keep the scans fast and to avoid any irrelevant findings.

32

3.4. INTEGRATION AND IMPLEMENTATION

Some test cases has been removed from the scan since they are not supported by
the host, or not fully working;:

o Path Traversal/LFI test cases 10, 12, 14, 16, 18, 20, 24, 37 and 54 were
removed since they all require WAVSEP to be hosted on a Windows machine
(they exploit the way Windows builds paths), but it has been hosted on Host
T, which runs Linux.

« Experimental test cases in all categories, except the DOM based XSS cases,
were removed since they are unstable/not fully working.

Nordnet

When testing on applications provided by Nordnet a similar approach to the one
described above (for WAVSEP) has been used. Each scanner were run against
each vulnerability found on Nordnet, while only enabling the applicable checks or
options. Due to potentially sensitive data in this test, exact details of the vulnera-
bilities is not given out, but rather some general indicators, such as the category of
the vulnerability.

3.4 Integration and Implementation

When a scanner has been found, it must be integrated in the delivery pipeline. To
be able to integrate and implement a scanner in the current development process
at Nordnet (described in Figure 2.4), three places in the delivery pipeline has been
identified, and then compared with the help of the requirements and wishes that
were obtained from the interview study (see subsection 3.1.2). Once a place is chosen,
a scanner has been implemented to seamlessly fit in the development process.

3.4.1 Integration

“As a measurement tool, penetration testing is most powerful when fully integrated
into the development process in such a way that early-lifecycle findings are used to
inform testing and that results find their way back into development and deployment
practices.” [36, Chapter 6]

Three places where a scanner can fit in the delivery pipeline has been investigated
and compared (see Figure 3.1). A presentation of these three can be found below,
containing a description of how security testing can fit there:

e Before committing - The security testing is performed just before the deliv-
ery pipeline, in Figure 3.1, takes place. This means that each developer will
have full responsibility for testing the code before committing it.

e In the CI: Automatic tests step - The security testing is performed in the
automatic test step of Figure 3.1.

33

CHAPTER 3. APPROACH

e In the QA: Tests step - The security testing is performed during the QA
testing step in Figure 3.1. Some scanners have the ability to act as a scanning
proxy [17], which can be used for automated QA testing with e.g. Selenium [29]
or manual QA testing with a browser by directing traffic through the scanner.

These three places has been evaluated using the requirements that were obtained
from the interview study in subsection 3.1.2. Each of the places has been analyzed
by looking at pros and cons before deciding where to implement a scanner. After
deciding where in the development process a scanner will be integrated, any cons with
that suggestion were further investigated before moving on with the implementation.

Build Pipeline
Commit Build and Package E> Cl: Automatic tests E> QA: Tests E> Deploy to production
Pipeline 87bcfa2f317a.2 E> 87bcfa2f317a.2 [> 87bcfa2f317a.2 E> 87bcfa2f317a.2
Apr 1,2015 11:08:32 Apr1,2015 11:11:42 Apr 1, 2015 11:13:01 Apr 1,2015 11:13:52
3 min 4 sec 1 min 14 sec 40 sec 3 min 4 sec
Pipeline 11fffbc3f25¢.1 E> 11fffbc3f25¢.1 E> 11fffbc3f25¢.1 E>
Apr 1,2015 10:33:04 Apr 1, 2015 10:36:02
2 min 48 sec 1 min 8 sec

Figure 3.1. A version of Figure 2.4, where the delivery pipeline at Nordnet is
extended with markings (in the shape of flashes) showing the three places where
security testing is possible

3.4.2 Implementation

To implement security testing in the Agile development process it must be automated,
and therefore a scanner has to be seamlessly integrated. This probably means that
some kind of wrapper around the scanner is needed to set up the target(s) and to
specify settings for the scan. Since it is possible to choose what settings and attacks
a scanners should use, a default configuration has been produced, tailored to the
needs of Nordnet. The wrapper also needs to make sure that some kind of scan
report is created so that the developers and QA engineers can see how the scan
went, and react accordingly. According to the web application security scanner
specification [9], a scan report should contain the following information:

¢ Mandatory items

— A description of an attack that demonstrates the issue.

— Further specifying that attack by providing script location, inputs and
context.

34

3.5. GUIDE

— A name identifying the vulnerability that semantically equivalent to the
definitions in the specification [9].

e Optional items

— The severity of the issue.

— Remediation advice for the issue.

3.5 Guide

When this section is reached, a scanner has been chosen and integrated in the Agile
development process at Nordnet. One of the goals for this thesis is to create a guide
for developers, containing information about how they can use the implementation,
and how using it will help them. The following topics has been addressed in the
guide:

e How a developer can set up security testing on a project.
e How they should interpret any output from the security testing.

e How they can fix any vulnerabilities found during testing.

The guide has been adapted to Nordnet in both content and layout, to make it
more familiar to the target group (the same target group as in the interview study).
This was done by using document templates and other internal guides found on
Nordnet. For inspiration about writing technical security related guides for the
target group, two OWASP guides were used:

o The OWASP Developer Guide 2014 [43].
o The OWASP Testing Guide v4 [44].

35

Chapter 4

Results

This chapter contains all the results of this thesis. These are presented in different
sections based on the sections in chapter 3. The results are presented in summarized
form, and in some cases (where noted) the full results can be found in one of the
appendices.

4.1 Pre study

The interviewees ended up containing four developers, one scrum master, two QA
engineers and two people responsible for the delivery pipeline. During the interview
study it became clear that QA engineers and scrum masters had a broader view of
security than developers, while developers generally had more information about
detailed threats, like XSS and SQL injection (see subsection 2.4.1). This is not
surprising since a developer’s work includes fixing bugs, which includes security
related bugs that require detailed knowledge. A QA engineer works with finding and
verifying issues in software, which includes security related issues that require both
general security knowledge, and some specialized knowledge. The level of security
knowledge in the target group depends on the interaction between security testing
and the development process. This is a common problem when security testing
meets agile development as described in section 2.5. As presented in the background
(see section 2.1), security testing is performed both internally at Nordnet, and
externally. None of these groups contain developers or QA engineers from Nordnet,
and therefore security does not influence the development process much.

Even though there were no security experts in the target group, the interviewees
still provided good insights regarding the security requirements at Nordnet. Many of
the developers mentioned that they were familiar with the vulnerabilities XSS and
SQL injection. This could mean that these vulnerabilities are common on Nordnet,
or that the vulnerabilities have been around for such a long time that everyone knows
about them. Either way, both of these scenarios show that such issues are important,
but that does not necessarily mean that they are the most important vulnerabilities
to Nordnet. Most of the security related concerns that came up during the interviews

37

CHAPTER 4. RESULTS

were in alignment with the discussion in subsection 2.4.1, and the overall impression
was that all vulnerabilities in that list are equally important to Nordnet.

These are the requirements and wishes of the target group on how and where
security testing can be performed in the Agile development process at Nordnet using
a scanner:

e General:

— The scanner can be interacted with from the command line.
— The scanner should be actively maintained.

— The false positive ratio should be as low as possible.

The false negative ratio should be as low as possible.

— The scanner can handle basic authentication (can scan as a logged in
user).

Reports should gather similar issues to avoid ambiguities.
e From developers:
— Any reports should be easily understood for developers even if they are
security novices.
— Developers should not have to write any extensive tests (scanning should
be as automated as possible).

o From people responsible for the CI environment / Jenkins:

— The scan needs to be fast, maximum five minutes.
— The scanner should preferably be able to run on Linux.

— The scanner should indicate how the scan went by exiting with certain
codes or by providing a scan report in JUnit [30] format.

e From QA:

— The ability to somehow mark false positives and hide those in future
scans.

— The automated scan should not be able to fail the build on its own.

— The ability to manually mark the build as pass or fail based on the scan
report.

4.2 Evaluating scanners

In this section a list of attack vectors applicable to Nordnet is compiled, then
20 scanners are compared with the help of these requirements.

38

4.2. EVALUATING SCANNERS

4.2.1 Gathering requirements

As a foundation for the scanner requirements a list of attack vectors from a recent
benchmark [14] are used. This list of attack vectors is then reduced to only contain
important attack vectors that are applicable to Nordnet. To reduce the list, a web
application security scanner specification from NIST [9] is used together with the
requirements from the pre study (see section 4.1). The following list motivates why
a particular attack vector is eliminated:

e These attack vectors rely on one or more technologies not in use by Nordnet:

Server-Side JavaScript (SSJS/NoSQL) Injection is eliminated since Nord-
net does not use NoSQL databases.

XML Injection is eliminated since web applications at Nordnet do not
use XML.

XPath/XQuery Injection is eliminated since Nordnet does not use XML,
which XPath/XQuery exploit.

Xml External Entity is eliminated since Nordnet does not use XML.

LDAP Injection is eliminated since Nordnet does not have any web
applications building LDAP queries.

SMTP/IMAP /Email Injection is eliminated since Nordnet does not have
any web applications handling email.

o These attack vectors are not recommended by NIST for a security scanner [9],
and they rely on items not available on Nordnet:

Buffer Overflow is eliminated since it typically targets the technology in
browsers and web servers rather than web applications.

Integer Overflow is eliminated since it typically targets the technology in
browsers and web servers rather than web applications.

Format String Attack is eliminated since it typically targets the technology
in browsers and web servers rather than web applications.

Padding Oracle is eliminated since it is not controlled by web applications,
but rather by the server and the browser.

o These attack vectors are eliminated based on other reasons:

JSON Hijacking is eliminated since a CSRF attack vector is included,
which renders JSON Hijacking useless.

Application Denial of Service is eliminated since it is already tested in
another, automated way at Nordnet.

39

CHAPTER 4. RESULTS

The remaining attack vectors are applicable to Nordnet and they are presented
in Table 4.1. If it is unknown whether an attack vector is applicable at Nordnet, but
the attack vector is important according to NIST [9], the middle column is marked
with a question mark. A symbol is mapped to each attack vector for later reference:
alphabetical symbols are used for applicable attack vectors and numeric symbols are
used for the others.

Table 4.1. Important attack vectors for vulnerability scanners that are applicable to
Nordnet (and some that probably are applicable). Each attack vector is also mapped
to a symbol, which is used for reference in Table 4.2 and Table 4.3

Attack vector Applicable at | Symbol
Nordnet?

Error Based SQL Injection YES A
Blind/Time-Based SQL Injection YES B
Reflected Cross Site Scripting YES C
Persistent Cross Site Scripting YES D
DOM Cross Site Scripting YES E
Path Traversal & Local File Inclusion YES F
Remote File Inclusion YES G
Unrestricted File Upload YES H
Open Redirect YES I
HTTP Header Injection & HTTP Response Splitting YES J
Code Injection YES K
Expression Language Injection YES L
Source Code Disclosure YES M
Cross Site Request Forgery YES N
Privilege Escalation YES (0]
Command Injection ? 1
Server-Side Includes Injection ? 2
Old, Backup and Unreferenced Files ? 3
Forceful Browsing / Authentication Bypass ? 4
Weak Session Identifier ? 5
Session Fixation ? 6

4.2.2 Comparing scanners

20 scanners from a recent benchmark [14] are mapped to the attack vectors defined
in Table 4.1. These can be seen in Table 4.2. For each scanner, it is marked if
the attack vectors are supported or not. The column titled # denotes how many
of the preferred attack vectors the scanner has support for (there are a total of 21
vectors).

40

4.2. EVALUATING SCANNERS

Table 4.2. Scanners mapped to attack vectors applicable at Nordnet. This is a
modified version of a table found in a recent benchmark of scanners [14], with attack
vectors irrelevant to Nordnet are removed

Supported attack vectors

Scanner #|A|B

IBM AppScan 201 v | v

WeblInspect 201 | V| vV

Acunetix WVS 18| v |V |V

W3AF 17| v | vV | v

Tinfoil Security |16 v | ¥ | ¥ v
NTOSpider 181 v |V |V

arachni 15| v | v

ZAP 15| v | v

IronWASP 15l v | v

Syhunt Mini 11l | ¥

Syhunt Dynamic | 11| v | ¥

SvlflsysGuard 150v | v
SkipFish 11 v | ¥
Wapiti 11l v | ¥
Netsparker 14| v | v
ScanToSecure 14| v | v

Jsky (Commercial
Edition) 12| v

Sandcat Free
Edition v
Vega 101 v | v

41

CHAPTER 4. RESULTS

To reduce the number of scanners, the approach described in subsection 3.2.2 is
used:

¢ Are the important attack vectors from Table 4.1 supported - Accord-
ing to the interview study, XSS seems to be a common vulnerability at Nordnet
(see section 4.1), and it is currently in the third place of OWASP top 10
(see subsection 2.4.1). Three of the attack vectors (C, D and E in Table 4.2)
are related to XSS, and therefore a scanner should preferably support as many
of them as possible. However, since supporting an attack vector does not
necessarily mean that all instances of that attack type will be found, this
requirement is insufficient to warrant the removal of any scanner from the
comparison. For future reference, the following scanners does not support the
majority of the attack vectors concerning XSS (note that the format is: Scanner
Name (number of supported XSS attack vectors): Syhunt Mini (1), Syhunt
Dynamic (1), Jsky (Commercial Edition) (1), Sandcat Free Edition (1) and
Vega (1).

e Is the technology at Nordnet supported - Most of this is already handled
by the previous criteria, but according to the interview study the scanner
should preferably be able to run on a Linux machine. This requirement is
insufficient to warrant the removal of any scanner from the comparison. For
future reference, the following scanners can not run on Linux: IBM AppScan
(Windows), Weblnspect (Windows), Acunetix WVS (Windows), NTOSpider
(Windows) and Netsparker (Windows).

e Are general problems with vulnerability scanners handled - One of
the general problems with vulnerability scanners, mentioned in subsection 2.5.2,
is that a scanner needed regular updates to be able to handle new vulnerabili-
ties. Therefore, this can be measured in activity, such as time from last release
(and commit in the case of open source scanners). If the latest stable release
of a scanner is over two years ago, or the latest commit is older than three
months, that scanner is regarded as inactive. Therefore the following scan-
ners are removed from further comparison (this was measured in May 2015):
SkipFish (latest release and commit in December 2012), Wapiti (latest release
in October 2013 and latest commit in November 2014), Syhunt Mini (latest
release March 2012), JSky (Commercial Edition) (latest release in February
2011), Sandcat Free Edition (latest release in April 2010) and Vega (latest
release in July 2011).

e How much does the scanner cost - It is hard to know how good a scanner
is before testing it, and therefore this section only handles raw costs, such as
licensing and maintenance costs. Just like the requirement on technology above,
this requirement is insufficient to warrant the removal of scanners from the
comparison. However, an expensive scanner that does not support everything
might not be worth considering. For future reference the following scanners are

42

4.2. EVALUATING SCANNERS

commercial: IBM AppScan (staring at $10,400 per user per year), Weblnspect
(around $10,000 per user per year), Acunetix WVS ($3,995, consultant ed. 1
year), Tinfoil Security (starting at $59 per month), Burp Suite Professional
($299 per user per year), NTOSpider (around $10,000 per user per year),
Syhunt Dynamic ($4,000 per user per year), Qualysguard WAS (starting at
$1,995 per year), Netsparker (starting at $1,950 for 1 year) and ScanToSecure
(unknown amount per scan). Since IBM Appscan, WebInspect, Acunetix WVS,
NTOSpider and Syhunt Dynamic are all expensive, and have already appeared
in this list they are removed from further comparison.

¢ Does the scanner fulfill the requirements from Nordnet

— Since the security testing needs to be performed in an internal environ-

ment, the scanner must be provided as an on premise version, and not
as software as a service (SaaS). Therefore the following scanners are
removed from further comparison: Tinfoil Security (they do offer to
run scans through a VPN, but that will pose additional security risks),
Qualysguard WAS and ScanToSecure.

One of the requirements obtained in the interview study is that a scanner
can be interacted with from the command line. This is also one of the
main requirements for this work since it enables programmatic interaction
with the scanner, which is vital for automation. However, a scanner
does not have to provide a command line interface (CLI) if it provides
something else that enable programmatic interaction, like an API, a
web interface, or something similar. Some of the scanners only provide
a GUI version, and therefore the following scanners are removed from
further comparison: IronWASP (no CLI, web interface, API or similar) and
Netsparker (it does offer to run a scan via command line with arguments,
but only a limited number of features can be accessed in that way, plus it
has appeared two times before in this list).

Table 4.3. A version of Table 4.2 where only four scanners remain

Supported attack vectors

Professional

Scanner #
W3AF 17|\ vIvIv|Iv| vV
Burp Suite

1alvivl|viv v

arachni

15/ v |v|v v v

ZAP

15/ v|v|v]|v v

CHAPTER 4. RESULTS

The four scanners in Table 4.3 remain after the removal process described above.
All four are active, they are affordable, and they fulfill the requirements from Nordnet.
However, they also lack some of the important applicable attack vectors, which can be
seen in Table 4.3 and Table 4.1. Most notable is that none of the four scanners have
support for expression language injection (ELI). Recent vulnerabilities concerning
ELI target an issue that can cause the Spring MVC framework [56] to double
resolve expression language (it is evaluated twice), but the framework has since been
updated to mitigate the issue. How these missing attack vectors affect the scanners
performance can be seen in the next section. A short presentation of each of the
remaining scanners follows:

Arachni

Arachni [33] is an open source scanner written in Ruby that consists of a framework
and a web Ul Arachni features a rich CLI that has support for fully customizable
scans, external plugins, generating scan reports in multiple formats and creating
custom authentication scripts. Arachni also has support for running on several hosts
in grid or cluster to leverage the scanning, which is unique among these scanners.

Burp Suite

Burp Suite [51] is a well-known commercial scanner. Burp Suite started out as a
manual tool used in penetration testing and has since been upgraded to support
several automated tasks. Burp Suite can be seen as a set of tools that support
several different testing activities, e.g. a proxy mode where requests and responses
can be investigated and modified, a scanner for automated penetration testing and
a spider for crawling. Burp Suite also contains a marketplace for extensions called
the BApp Store, where more options and features can be downloaded and added.

OWASP ZAP

OWASP ZAP [8] is an open source scanner written in Java. OWASP ZAP aims to
be a scanner that can be used by people of varying background in security, such
as developers or testers, but also by more experienced penetration testers. Like
Burp Suite, OWASP ZAP features a proxy, a spider, a scanner and a marketplace
for extensions. OWASP ZAP provides a REST API, which makes programmatic
interaction easy.

w3af

w3af [52] is an open source scanner written in Python that provides two user
interfaces, a console Ul and a graphical Ul. w3af is built around plugins, where the
main three sets of plugins are crawl, audit and grep. Each plugin is configurable and
they usually target a very specific threat or vulnerability. A notable long term goal

44

4.3. TESTING

of w3af is that it wants to “combine static code analysis and black box testing into
one framework” [52].

4.3 Testing

This section contains information on testing the scanners above on deliberately vul-
nerable applications (WIVET and WAVSEP) and applications provided by Nordnet.
It is divided into subsections based on the application tested against, and each of
these subsections contains:

e A description of how each scanner was tested: how it was set up and what
options were used.

e A summary containing the results of all scanners and some general observations
made during the test.

The latest released version of each scanner is used for testing, with an exception
for Arachni, where both the latest released version and the latest development
version are used, since the latter contains many features and bug fixes [33]. The
version used for each scanner can be seen in Table 4.4.

Table 4.4. The scanners that are tested, their version

] Scanner ‘ Version

Arachni v1.0.6 and v2.0dev
Burp Suite v1.6.12

OWASP ZAP | v2.3.1

w3af v1.6.48

4.3.1 WIVET

This section presents how each of the scanners in Table 4.4 were tested on WIVET.
A summary of the results is provided at the end of the section.

Arachni

Both versions of Arachni were tested in the same way on WIVET. After WIVET
only v2.0dev is used because of performance enhancements, which can save a lot
of time when testing the remaining applications. Note that http://target/ is the
URL of Host T in subsection 3.3.1. To scan WIVET, the following command was
used:

45

http://target/

CHAPTER 4. RESULTS

./bin/arachni http://target/wivet/ --checks trainer --
audit-links --audit-forms --scope-exclude-pattern=
logout --http-cookie-string="PHPSESSID=
h4pksk4dte915acu8sa8rndsil"

e The trainer check makes it possible for Arachni to learn from an ongoing scan,
and adapt it accordingly.

e The audit-links and audit-forms options restrict the scanner to only audit links
and forms (and not cookies, etc.). This is used to limit the scan, and thereby
make it faster.

o The http-cookie-string option sets a cookie (in this case PHPSESSID) that
Arachni uses while crawling, which lets WIVET track progress correctly.

Burp Suite

To scan WIVET with Burp Suite a proxy was first created and then a browser,
using that proxy, was navigated to http://target/wivet. This made WIVET
appear in the Site map of Burp Suite, and also set a session cookie in the Cookie
Jar (under Options > Sessions), which is used by the Spider. Then, the Scope was
established like in Figure 4.1.

[Add J Enabled | Protocol | Host / IP range | Paort | File
W HTTP *argetd A80% Mwivet/ *
Edit
l Add J Enabled | Protocol | Host / IP range |Poit | File
4 HTTP “targetd “80% wivet/logout\.php.”

| Edit |

Figure 4.1. Scope settings of Burp Suite [51]

This means that Burp Suite follows all URLs that match http://target/wivet/
*, except for the logout.php page. After setting up the scope, the WIVET folder
(under http://target/ in the Site map) was right clicked, and the option Spider
this branch was chosen.

OWASP ZAP

To scan WIVET with OWASP ZAP a proxy was first created and then a browser,
using that proxy, was navigated to http://target/wivet. This made WIVET
appear in the Sites list of OWASP ZAP. Then, a context for the scan was set up like
this:

46

http://target/wivet
http://target/wivet/*
http://target/wivet/*
http://target/
http://target/wivet

4.3. TESTING

e Include in context: \Qhttp://target/wivet\E.*

e Exclude from context: .*logout.*

This means that OWASP ZAP follows all URLs that match http://target/
wivet/*, except if they contain the word logout.

AJAX Spider (%]
(®) PhantomJs | SelectPhantomJs binary... | N
(_J Internet Explorer l Select IEDriverServer... J
MNumber of browser windows to open: 5 =
Maximum crawl depth (0 is unlimited): 0
Maximum crawl states (0 is unlimited): =
Maximum duration (min, 0 is unlimited): 90
Event wait time (ms): 1000 [
Reload wait time (ms): 1000 |

|| Click elements once

[+] Use random values in farm fields

|| Click default elements only (a, buiton, input)

Select elements to click during crawl (if not clicking on only default elements):

Enabled | Element e Add...
'y

| a

Al AR [¥

Figure 4.2. Settings window of the AJAX Spider [§]

After setting up a context, the AJAX Spider settings were edited as in Figure 4.2.
Additionally, everything in the elements table (at the bottom of Figure 4.2) was
checked to catch any special cases WIVET might have. The session cookie was set
by clicking the Http Sessions tab current, and setting the session from the browser
to active. Finally, the WIVET folder (in the Sites list) was right-clicked, and the
option AJAX Spider ... was chosen and started.

w3af

The command line version of w3af was used to scan WIVET, which is started by
executing ./w3af_console. The web_spider (in the crawl plugin) was enabled, and
configured to target http://target/wivet with an ignoreRegex set to .*logout. *.
This means that w3af follows all URLs that match http://target/wivet, except if
they contain the word logout. To configure the scan with a session cookie, a valid
cookie was first exported from Firefox, which was then added in w3af by setting
the cookie_jar_file under config/http-settings. Then the scan was started.

47

http://target/wivet/*
http://target/wivet/*
http://target/wivet
http://target/wivet

CHAPTER 4. RESULTS

Summary

The results of the WIVET tests are shown in Figure 4.3. Arachni was able to find
the most test cases of all the scanners, and both its versions found the same number
of test cases with the only difference being execution speed, which is not shown in
the results. Arachni v2.0dev was an order of magnitude faster than v1.0.6. Because
of this, and since v2.0dev otherwise performed identically to v1.0.6, the rest of the
tests are only performed with v2.0dev.

Comparing results with old test data from the benchmark mentioned earlier [14],
two scanners performed marginally worse, and two performed significantly better:

e Arachni - Arachni only reached 19% in the old test data, and achieved 96%
in this test. This is a significant improvement, which can be explained by
improved JavaScript crawling, other development done since the benchmark
was performed, and probably also an adaption to WIVET.

e Burp Suite - Burp Suite only reached 16% in the benchmark, and achieved
50% in this test. This is also a significant improvement. This can be explained
by the same factors as for Arachni; improved JavaScript crawling, other
development done since the benchmark was performed, and probably an
adaption to WIVET.

e OWASP ZAP - OWASP ZAP reached 73% in the benchmark, and only
achieved 71% in this test. This means that it performed marginally worse in
this test, which could be explained by programming bugs. However, the most
likely explanation of this result, is that the settings for scanning WIVET are
different between the benchmark and this test.

o w3af - w3af reached 19% in the benchmark, and only achieved 14% in this
test. This means that it performed marginally worse in this test. As in the
case with OWASP ZAP, this is most likely because the settings for scanning
WIVET are different between the benchmark and this test. However, w3af
was the most unstable of all these scanners, which can be explained by its
development model, where small changes are made frequently. This could
mean that the version tested here suffered from bugs that relate to crawling.

4.3.2 WAVSEP

This section presents how each of the scanners in Table 4.4 were tested on WAVSEP.
A summary of the results is provided at the end of the section:

Arachni

To scan WAVSEP using Arachni, the command ./bin/arachni was executed with
the target URL, and the following options:

48

4.3. TESTING

WIVET Coverage
100%
75%
4]
5
@ 0%
=]
&
25%
0%
Arachnivt. ArachnivZ. Burp Suite OWASP w3aafvl 6.
0.6 Odev v1.6.12 ZAP w231 18
Scanner

Figure 4.3. WIVET coverage results for Arachni, Burp Suite, OWASP ZAP and
w3af

o --checks - For example --checks=xss* on the XSS test cases.

e --audit-links --audit-forms - This restricts the scanner to only audit links
and forms (and not cookies, etc.). This was is used to limit the scan, and
thereby make it faster.

Example use when scanning Reflected XSS GET:

./bin/arachni http://target/wavsep/active/Reflected-XSS/
RXSS-Detection-Evaluation-GET/index.jsp --checks=xssx*
--audit-1links --audit-forms

Table 4.5 shows the checks used for each category of test cases.

Burp Suite

To scan WAVSEP using Burp Suite, a similar approach to the one used to scan
WIVET was used:

o A proxy was set up.

e The browser, using the proxy, was then used to navigate to the
test URL, e.g. http://target/wavsep/active/Reflected-XSS/RXSS-
Detection-Evaluation-GET/index. jsp.

49

http://target/wavsep/active/Reflected-XSS/RXSS-Detection-Evaluation-GET/index.jsp
http://target/wavsep/active/Reflected-XSS/RXSS-Detection-Evaluation-GET/index.jsp

CHAPTER 4. RESULTS

Table 4.5. A presentation of the options used for Arachni to scan each test category

Test category

|

Options

Local File Inclusion/Directory Traversal/-
Path Traversal

path_ traversal, directory_ listing, file_in-
clusion, source_ code__ disclosure

Remote File Inclusion rfi
Reflected Cross Site Scripting (RXSS) xss*
SQL Injection sql*

Unvalidated Redirect

unvalidated_ redirect, unvalidated_ redire-
ct_dom

Old, Backup and Unreferenced Files

backup_ files, backup_ directories, commo-

n_ files, common__ directories

e The target folder, e.g. RXSS-Detection-Evaluation-GET, was right-clicked,
and the option Spider this branch was chosen.

e In the Options pane under the Scanner tab, the following was set:

— Set:
x Scan speed: Thorough

* Scan accuracy: Normal

— All the applicable options under Active Scanning Areas were then checked,
e.g. Reflected XSS and Stored XSS.

e The target folder, e.g. RXSS-Detection-Evaluation-GET, was right-clicked,
and the option Actively scan this branch was chosen.

The extensions J2EEScan 1.2.8 and Additional Scanner Checks 1.2 from the
BApp Store were used to get improved coverage. Table 4.6 shows the active and
passive checks used for each category of test cases.

OWASP ZAP
To scan WAVSEP using OWASP ZAP the following procedure was followed:

e A proxy was set up.

e The browser, using the proxy, was then used to navigate to the
test URL, e.g. http://target/wavsep/active/Reflected-XSS/RXSS-
Detection-Evaluation-GET/index. jsp.

e The target folder, e.g. RXSS-Detection-Evaluation-GET, was right-clicked
and the option Spider Subtree was chosen.

e The target folder, e.g. RXSS-Detection-Evaluation-GET, was right-clicked
and the options Attack and then Active Scan advanced ... were selected.

50

http://target/wavsep/active/Reflected-XSS/RXSS-Detection-Evaluation-GET/index.jsp
http://target/wavsep/active/Reflected-XSS/RXSS-Detection-Evaluation-GET/index.jsp

4.3. TESTING

Table 4.6. A presentation of the options used for Burp Suite to scan each test

category

Test category

|

Options

Local File Inclusion/Directory Traversal/-
Path Traversal

File path traversal / manipulation, Infor-
mation disclosure

Remote File Inclusion

Remote file inclusion, Information disclo-
sure

Reflected Cross Site Scripting (RXSS)

Reflected XSS, Stored XSS, DOM XSS in
Additional Scanner Checks

SQL Injection

All checks under SQL injection

Unvalidated Redirect

Open redirection

Old, Backup and Unreferenced Files

Right-click folder and choose Engagement
Tools > Discover Content. Then under the
Config tab check discover files and directo-
ries and enable all file extensions and start

e In the Policy tab,

the Default Threshold was switched to OFF

for all categories, and then the applicable Policy was configured to
have Threshold: Medium and Strength: Insane, e.g. Policy=Injection >
Cross Site Scripting (Reflected), Cross Site Scripting (Persistent), Cross Site
Scripting (Persistent) - Prime and Cross Site Scripting (Persistent) - Spider.

The extensions active scanner rules (beta) version 14 and ascanrulesAlpha version

11 from the OWASP ZAP marketplace were used. The external extension Good Old
Files v1.0 [25] was also used. Table 4.7 shows the checks used to scan each category
of test cases.

Table 4.7. A presentation of the options used for OWASP ZAP to scan each test

category

Test category

|

Options

Local File Inclusion/Directory Traversal/-
Path Traversal

Direct Browsing, Path Traversal

Remote File Inclusion

Remote File Inclusion

Reflected Cross Site Scripting (RXSS)

Cross Site Scripting, Cross Site Script-
ing (Reflected/Persistent) - Prime/Spider,
Script active scan rules

SQL Injection

SQL Injection, SQL Injection - MySQL/Hy-
personic SQL/Oracle/PostgreSQL

Unvalidated Redirect

External Redirect, Open Redirect

Old, Backup and Unreferenced Files

Good old files plugin

51

CHAPTER 4. RESULTS

w3af

To scan WAVSEP using w3af special scripts was created, and executed with
./w3af_console -s ScriptFile.w3af. The scripts used are a stripped version
of a script found on the OWASP wiki [53]. In the version used here, the fuzz
settings, the authentication settings, and the settings of target OS and framework
were removed. To direct each scan different audit, grep and crawl plugins were
used. Table 4.8 shows the audit, grep and crawl plugins used to scan each category
of test cases.

Table 4.8. A presentation of the options used for w3af to scan each test category

Test category ‘ Options

Local File Inclusion/Directory Traversal/-
Path Traversal

Ifi (audit)

Remote File Inclusion

rfi, xss (audit)

Reflected Cross Site Scripting (RXSS)

xss (audit), dom_ xss (grep)

SQL Injection

sqli, blind_ sqli (audit)

Unvalidated Redirect

global _redirect, phising_ vector (audit)

Old, Backup and Unreferenced Files

content_ negotiation, digit_ sum, dir_fil-

e_bruter (bf_directories, bf files, be_re-
cursive), url fuzzer, wordnet (crawl)

Summary

The results of the WAVSEP tests are divided into three separate charts:

e One showing the test coverage on each test category presented in section 3.3.1,
for each of the scanners (see Figure 4.4).

e Another showing the percentage of false positives reported as vulnerable in
each test category for each scanner (see Figure 4.5).

o A third showing the overall average for each scanner, in each metric (coverage
and false positive) (see Figure 4.6).

Note that the absence of any bar(s) in a chart simply means that the bar(s) have
the minimum value in the chart, and as such they are not shown. Full results are
available in Appendix A. Coverage is measured as: I%g?;‘f‘;ruonfﬂ;’e ‘ilg‘grj‘?ﬁ?&iﬁ?ﬁg

A notable result is that Arachni is bested in the Reflected Cross Site Scripting
(RXSS) category by OWASP ZAP, which happened since OWASP ZAP had support
for more scripting languages than Arachni. Another notable result is that OWASP
ZAP identified all the false positive test cases in the backup category as vulnerable
(see Figure 4.5), which is most likely due to the quality of the external plugin Good
Old Files [25].

52

4.3. TESTING

WAVSEP Coverage

B Arachni [Burp Suite [OWASP ZAP wiaf
100,00%
80,00%
@ 60,00%
g
g
=]
O 40,00%
20,00%
0,00%
N P 2) N " " "
o T V€ o' %@3‘5 ge®
o £ WP ae® o 0
Test category
Figure 4.4. WAVSEP coverage for each test category described in section 3.3.1
WAVSEP False positives reported
B Arachni [Burp Suite [OWASP ZAP wiaf
100,00%
80,00%
o £0,00%
£
=]
T
© 40,00%
20,00%
0,00% I I
N P 2) N " "
o T V€ o' %@3‘5 ge®
o £ WP ae® o 0
Test category

Figure 4.5. WAVSEP false positives reported for each test category described
in section 3.3.1

53

CHAPTER 4. RESULTS

WAVSEP Overall average

B Arachni [Burp Suite OWASP Z8P wiaf

100,00%

75,00%
1 1]
&
2

= 50,00%
@
g
]

25,00%

0,00% .
Coverage False positives reported
WAVSER Metric

Figure 4.6. Summary of overall average WAVSEP coverage and false positives

Comparing results with old test data from the benchmark mentioned earlier [14],
some more notable results were found, including some quirks and inconsistencies
that do not show in the figures:

e Arachni - Compared to the old test data, Arachni now has support for
another attack vector (Old, Backup and Unreferenced Files), it has increased
coverage in all categories (that were not already 100%), and it has gotten rid
of the false positives in SQL Injection. The extremely high numbers probably
means that Arachni has been adapted to perform well WAVSEP

Arachni was just 6 test cases in the XSS category from reaching 100% coverage
overall. The missed test cases relied on support for Flash and VBScript, which
Arachni does not support, and which is not used by Nordnet.

e Burp Suite - Compared to the old test data, Burp Suite has increased the
overall coverage on WAVSEP, while it has decreased coverage in the XSS
category. The false positive rate has increased significantly, from 0% overall to
roughly 16%. The cost of increasing coverage is often also an increased false
positive rate, which can explain these results.

The DomXSS check, that is a part of the Additional Scanner Checks extension,
did not find any of the four test cases vulnerable to DOM based XSS. Some of
the test cases under SQL Injection required multiple scans to find all cases,

54

4.3. TESTING

hence the results were inconsistent. This could mean that network or server
problems were not sufficiently handled.

e OWASP ZAP - Compared to the old test data, OWASP ZAP has decreased
coverage in two categories (XSS and backup files), while it has increased
coverage in two other categories (Unvalidated Redirect and Local File Inclusion).
The false positives in the SQL Injection category have been fixed, while the
false positive rate in the Unvalidated Redirect category has increased. The
same observation as above can be made; increased coverage in the Unvalidated
Redirect category also led to an increased false positive rate.

OWASP ZAP had even more inconsistencies than Burp Suite. These were
manifested in the categories SQL Injection, Local File inclusion, Remote File
Inclusion and Old, Backup and Unreferenced Files. These results are hard
to explain and point to some underlying programming error since common
problems, such as network errors do not normally affect static categories (file
inclusion or backed up files). However, the inconsistencies in the backup
category are most probably caused by the external extension that was used
(Good Old Files).

o w3af - Compared to the old test data, w3af has decreased coverage in two
categories (Local File Inclusion and Unvalidated Redirect), while it has in-
creased coverage in the other categories. The false positive rate has increased
dramatically overall, due to increases in both categories that deal with file
inclusions (a two times higher rate in Remote File Inclusion and a six times
higher rate in Local File Inclusion). The increase in false positive rate in the
Local File Inclusion category stands out since it is comparatively large, and
since the coverage in the same category was decreased. This could have been
caused by a number of things, such as programming bugs, different settings
used or it could be due to a lack of regression tests (mentioned in section 2.3).

w3af also had many inconsistencies (easiest seen in the Local File Inclusion
category) and some, what appeared to be, random errors while scanning cases
under Remote File Inclusion. These random errors occurred in all categories,
and therefore they are probably caused by programming errors.

Overall, the comparison between the results of the benchmark and the results
from the tests conducted in this thesis implies that scanners are performing both
better, and worse. A possible explanation for the cases where coverage decreased
between the two tests can be that different settings were used. However, this
impact was minimized by using the same settings for this thesis as in the benchmark
(wherever they were noted, which they were most of the time but not always).

After testing the scanners against WAVSEP and WIVET, w3af was removed from
further testing due to its relatively poor results, and the errors and inconsistencies
mentioned above. It turned out that Burp Suite and OWASP ZAP were quite similar
with a slight edge to OWASP ZAP in the results (see Figure 4.3 and Figure 4.6),

55

CHAPTER 4. RESULTS

which it received much thanks to the highly unstable external plugin Good Old Files.
Due to this plugin, and inconsistencies experienced during scanning, OWASP ZAP
is also removed from further comparison.

4.3.3 Nordnet

Since both w3af and OWASP ZAP were removed in the last section, only Arachni
and Burp Suite are tested in this section.

When this test was carried out, the existing processes for finding vulnerabilities at
Nordnet (see section 2.1) had found eight XSS vulnerabilities in the test environment.
Most of the details of these vulnerabilities are censored in the following test because
they are sensitive to Nordnet (such as URLs and parameter names). The test results
can be seen in Figure 4.7. The lighter colored area behind the bars shows how many
known vulnerabilities there are on each URL.

Testing on Nordnet
B Arachni M Burp Suite Total

Number of vulnerabiiities found
[

https:/itarget’ hitps:iftarget! hitpsiftarget’ https:iiftarget’ https:/farget’
pagel.html? page2.html? pagea.html? pagedhtml? pageS.himl?
a= b=8ec=8ed= e=8df= g= h=

Vulnerable URL

Figure 4.7. Test results for Arachni and Burp Suite on Nordnet

After this final evaluation of Arachni and Burp Suite, where Arachni once again
has the highest coverage, Arachni is chosen as the scanner that will be integrated in
the development process at Nordnet.

4.4 Integration and implementation

In this section the three places where security testing can be integrated in the delivery
pipeline, suggested in subsection 3.4.1, are evaluated. One of these is chosen, and

56

4.4. INTEGRATION AND IMPLEMENTATION

then Arachni is implemented there.

4.4.1 Integration

Three potential places where security testing can be integrated in the delivery
pipeline are evaluated by listing their pros and cons:

e Before committing

— Pros:

* The feedback from the security testing is as fast as it can possibly be.
* The testing takes no time for the actual CI process since the testing
happens outside of its scope.
— Cons:
* The security testing is highly dependent on the security knowledge
of the developer, and not fully automated.

* There is no guarantee that the security testing has been performed
when code is committed since the developer can just choose to ignore
it.

* There is no guarantee that the set up that one developer has is the
same as someone else’s, which can lead to inconsistencies between
tests.

e In the CI: Automatic tests step

— Pros:
* Most automated solution of these three.
x Developers get fast feedback and QA still has a final say.

* One central scanner is easy to maintain and ensures that everyone
uses the same version and gets the same results.

— Cons:
* The endpoints must be manually specified (the URLs that the scanner
should scan, or start scanning).

e In the QA: Tests step

— Pros:
* One central scanner is easy to maintain and ensures that everyone
uses the same version and gets the same results.

* QA has full control over what happens. They can get scan reports
from Arachni after their testing is complete and from that decide
whether or not to pass a build.

o7

CHAPTER 4. RESULTS

* Practically invisible to the developers since they do not have to
perform the testing but only react to the outcome of the tests.

— Cons:

x Longer wait for developers to see the results from the security tests.
The feedback loop is not automated in this case since deployment to
the test environment can only be performed manually by QA.

* Much more work for QA.

The first suggestion looks good at a first glance, since the feedback for security
testing is fast, and since the security testing takes no time from the CI process.
However, according to the wishes and requirements from section 4.1, the developers
wanted the security testing to be as automated as possible, and with this approach
they have to start and configure each scan manually. In short, it is too dependent
on the developers, and too little on QA. There is also no guarantee that the security
testing is performed once the code is committed, which means that vulnerabilities
can still get out into production.

The last suggestion also looks good, since QA get full control over the scan,
which they expressed a need for in the interview study. It also looks good from
the developers perspective since they do not have to perform the security testing.
However, this approach is too dependent on QA and that affects the feedback rate
badly. Since this step must be started manually and requires active work from
the QA engineers, it is not that automated either.

This leaves the second suggestion; to integrate the scanner in the CI: Automatic
tests step. This suggestion has a good combination of both feedback rate, and
involvement of QA engineers. It is also the most automated solution of the three,
which satisfies the wishes from both developers and QA (see section 4.1). Finally,
it means that a single scanner can be used, which makes it easy to maintain. The
only issue with this suggestion is to find the endpoints for an application, but since
Arachni displayed good results in the crawling tests (see Figure 4.3) this can be
solved by only supplying it with a few starting points, and then letting Arachni
crawl through the rest of the application. Therefore, for this approach to work, it
was decided that each project must supply a file containing endpoints in JSON [20]
format. An example of such a file is shown below:

Listing 4.1. An example endpoints file

{

"endpoints": [
"http://target.ci/endpointl",
"http://target.ci/endpoint2",
"http://target.ci/endpoint3"

]

}

58

4.4. INTEGRATION AND IMPLEMENTATION

4.4.2 Implementation

To implement Arachni in the CI: Automatic tests step, a small wrapper script [12]
was written, and a scan profile targeting Nordnet web applications with all applicable
checks from subsection 4.2.1 was created. The wrapper script is designed to be
called with the endpoints file as an argument, and it has the following tasks:

e Check the environment

— Is the scanner located where it should be?

— Is the scanner profile located where it should be?
¢ Parse data and construct a call to Arachni

— Parse the endpoints file for URLs and convert them to a form that Arachni
understands, e.g. the contents of Listing 4.1 would be converted to:

"http://target.ci" --scope-extend-paths=EXTEND_PATHS.
EXTEND_PATHS is a file created by the script that contains one row
per endpoint (/endpointl, /endpoint2 and /endpoint3).

— Generate a unique name for the scan.

— Call Arachni with the arguments above.

e Generate a scan report in JSON format from the results of the scan with the
help of arachni_reporter, which is part of Arachni [33].

o Choose parts of the JSON formatted scan report to build a JUnit [30] formatted
xml scan report that Jenkins [31] can understand.

To meet the requirements posed in subsection 3.4.2, and to adapt the report to
the security knowledge of the target group, the following items are included in a
scan report:

e The category for the vulnerability as class name in the JUnit report. Since
JUnit is built for Java [42] and collects all issues per class this means that all
issues in the same category are grouped together in the published report.

e URL - This is used as both issue name in the scan report and as a field in the
description. In the scan report all issues are named <classname>.<name>>.
Having named the issues like this makes it easier to distinguish between issues.

o For each issue there is a description (mentioned in the above item), which
includes the following:

— Title - A title for the issue, a longer version of the category above, e.g. an
issue with the category XSS_TAG receives the title Cross-Site Scripting
(XSS) in HTML tag.

59

CHAPTER 4. RESULTS

— Severity - The severity of the issue, this is any one of the following
(sorted from lower to higher): informational, low, medium, high.

— Description - A short description of the issue.

— References - Some references to the issue from well-known sources such
as OWASP [46].

— Variations - This is a list of all variations found by the scanner of how
to exploit the specific vulnerability. The following is included for each
variation:

* Trust - If the variation is trusted or not (if it is untrusted it must
be verified manually).

*x Affected page - A full URL of the exploit, works best when Method
(below) is GET.

x If they are available, these are also included:
Injected - The injected payload.
Proof - Proof that the exploit worked.

HTTP request - The full HT'TP request with all headers. This
is a good complement to the affected page since this takes care
of all HTTP methods (POST, PUT, etc.).

— The description also include the following items, if they are available:

* Method - The HTTP method used by the scanner when it found
the issue (e.g. GET, POST etc.)

x Parameter - The vulnerable parameter in this specific case.

*+ Remediation guidance - Some general information on how to
remedy the vulnerability.

When such a scan report is created, Jenkins can read and publish it. Based
on the scan report the script also decides what to do with the build: If any issues
are found during a scan, the script marks the build as unstable, which can be seen
in Figure 4.8. When a step in the delivery pipeline (see Figure 2.4) is marked as
unstable this is an indication that something may be wrong, but it is still possible
for a QA engineer to manually allow the build to continue. Marking a build unstable
also triggers a mail to the affected developers to notify them of the report. Jenkins
also keeps track of the issues over several builds, which means that it is possible to
see how old an issue is (for how many builds it has been around), and if the number
of issues reported are more, less or the same as in previous builds (see Figure 4.9).
An example of a scan report can be seen in Figure 4.10.

4.5 Guide

When working with the last section, it made more sense to have any remediation
advice information directly available in Jenkins [31], rather than in the guide as

60

4.5. GUIDE

Build Pipeline

'S
'S

¢ @
¢ @

87bcfa2f317a.2

87bcfa2f317a.2

87bcfa2f317a.2

P Cromesnses) @

Figure 4.8. A version of Figure 2.4 where the CI: Automatic tests step is marked as
unstable by the automated security tests

Test Result

3 failures (+1)

7 tests (+2)
Took 1 min 32 sec.

All Failed Tests

Test Name Duration Age

4 XSS .http://target.ci/endpoint1/ 24 sec 1

4 XSS.http://target.ci/endpoint2/ 14 sec 1

4 XSS_TAG.http://target.ci/endpoint3/ 54 sec 1
All Tests

Package Duration Fail Skip Pass Total

(root) 1 min 32 sec 3 0 4 7

Figure 4.9. A summarized view of the report in Jenkins [31]. This view is accessed
by clicking on the unstable step in Figure 4.8 and then on Test Result

CHAPTER 4. RESULTS

Failed

XSS_TAG.http://target.ci/endpoint1/

Error Message
XSS in HTML tag

Stacktrace
Cross-Site Scripting (XSS) in HTML tag - XSS in HTML tag

Severity: HIGH

URL: http://target.ci/endpointl/
Method: GET

Parameter: param

BHEH
Variations
HHEHFH

Variation 1 (Trusted)
* Injected: 1" arachni_xss_in_tag="374d8e30118449a9946323f960852279" blah="
* Proof: " arachni_xss_in_tag="374d8e30118449299463231960852279" blah="

* Affected page: http://target.ci/endpointl/?param=1%22%20arachni_xss_in_tag=%
22374d8e30118449299463231960852279%22%20blah=%22

* HTTP request:

GET /endpointl/?param=1%22%20arachni_xss_in_tag%3D%
22374d8e30118449a994632319608522

79%22%20blah%3D%22 HTTP/1.1

Host: target.ci

Accept-Encoding: gzip, deflate

User-Agent: ci_scanner

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

SRR
Description
SR

Client-side scripts are used extensively by modern web applications.
They perform from simple functions (such as the formatting of text) up to full

L IR c 12 o C| Aot .Y s c o L o

Figure 4.10. A sample scan report in Jenkins [31]. See subsection 3.4.2 for all the
information that this report includes

62

4.5. GUIDE

suggested in section 3.5. Therefore the guide contains some general information
about how to set up security testing on a project, how to interpret scan reports,
and some examples to make the work easier to grasp for the readers (basically other
versions of Figure 4.9, Figure 4.8 and Figure 4.10).

When looking through internal guides at Nordnet, there was already a guide
that included specific coding advice called Secure Coding Guideline. Therefore, that
guide is referred to when necessary to avoid creating duplicate content.

The final guide is named Security Testing in the CI Environment, and can be
found in Appendix B. The contents of the guide are:

¢ Introduction - This section introduces the guide; who it is for and what it
covers.

e Setup - This section explains how to modify a project so that it can be tested
in the CI: Automatic tests step.

e Report - This section explains what is included in the scan report and why.
This is the same information that is available in subsection 4.4.2.

o Examples - This section contains examples of what it looks like when every-
thing is set up correctly. The figures in this section are roughly the same as
the ones in subsection 4.4.2.

63

Chapter 5

Conclusions

In this chapter the results of this thesis will be discussed and conclusions will be
given. Recommendations and future work will also be addressed.

5.1 Discussion

All the areas that are defined in the purpose (see section 1.3) are covered in the
thesis. First the goals stated in the purpose will be discussed, and then the results
from chapter 4, and lastly an answer to the problem statement (in section 1.2) will
be discussed.

5.1.1 Goals

Here are the goals stated in the purpose (see section 1.3):

o Investigate how security can be integrated in an Agile development
process

This was investigated by first looking at any theory related to this question.
From that, two plausible suggestions of how to integrate security in the devel-
opment process were found: source code analysis and automatic security testing
using a scanner (see Figure 2.7) [11, 32]. Both of these are automated once
set up, which fits the goal of Agile perfectly. I chose to go with the automatic
security testing approach since it has the major advantage of being independent
of how an application is built, whereas code analysis is highly dependent on
what programming language is used (see subsection 3.1.1). This makes the
automatic security testing approach more general and easier to adapt than
static analysis, but it also brings some limitations. The cost of using a scanner
is that it can miss whole classes of vulnerabilities [17, 13]. However, more
recent data shows that scanners are getting better at finding vulnerabilities [14],
and under the assumption that the scanner supports the most common web
application vulnerabilities (see subsection 2.4.1) an automatic security testing

65

CHAPTER 5. CONCLUSIONS

approach using a scanner is the best way of integrating security in an Agile
development process.

Investigate how and where automated security tests can be included
in continuous integration within the Agile development process

To investigate how this could be done, a pre study was conducted (see sec-
tion 4.1). This contained an evaluation of the two suggestions mentioned above,
and an interview study that was used to get requirements and wishes from
Nordnet. Since the automatic security testing approach was chosen above,
security will be integrated in the Agile development process by using a web
application security scanner. To investigate where in the development process
the scanner could be integrated, theory about CI [24] and the development
process at Nordnet was studied. This turned out into a model development
process shown in Figure 2.4. An interview study was also conducted in order
to get ideas and requirements for the scanners placement in the development
process. Three places in the delivery pipeline where security tests could be in-
cluded were identified (see Figure 3.1). The pros and cons for each of the three
places were analyzed, and finally the CI: Automatic tests step of Figure 2.4
was chosen since it provided the most automated testing. It also enabled fast
feedback for developers, while still letting QA have full control over the build
(see subsection 4.4.1).

Produce a guide for developers telling them how to set up auto-
mated security tests, helping them to understand security implica-
tions and risks and showing them how they can mitigate certain
risks to reduce vulnerabilities

This was approached by using internal Nordnet guides, and OWASP testing
guides as inspiration in order to create a guide that would feel familiar to
the future readers at Nordnet, and to make sure that the contents where
properly adapted to development and testing. The contents of the guide are
highly influenced by the outcome of the goals above and of requirements and
wishes from Nordnet collected in the interview study (see section 4.1). These
interviews were also used to determine the general level of security knowledge
on Nordnet, which in turn was used as an indication of what level the guide
should be written on.

The guide ended up containing information about how to set up security testing
for a project, what a scan report contains, and some examples of how it will
look like once set up (see section 4.5). Since security implications, risks and
mitigation tips are all highly coupled with the issue type I decided to put
those in a the scan report instead of in the guide as originally planned. This
scan report contains information about all issues found during a scan and is
published to Jenkins [31] (see Figure 4.10). For the final guide see Appendix B.

66

5.1. DISCUSSION

5.1.2 Results

In this subsection the results found in chapter 4 will be discussed.

Pre study

This is a special section since it contains requirements for all the work performed in
this thesis (see section 4.1). Therefore I will explain either how each requirement is
met, or motivate if it is not:

e General:

— The scanner can be interacted with from the command line:

This is met since Arachni has a rich CLI (see the documentation [33],
and the wrapper script [12]).

— The scanner should be actively maintained:

Active is not an absolute measure. The following criteria were used to
determine if a scanner was actively maintained: time since last stable
release, time since last stable commit and who uses it. For Arachni, the
last stable release when the testing was performed (March 2015) was on
the 8th of December 2014, and during testing a development version was
used, which is now (May 2015) released. There are currently testimonials
from ten companies using Arachni (see the liaison program at the Arachni
website) with the most notable being eBay [19]. [33]

— The false positive ratio should be as low as possible:

This is one of the mandatory features required in a web application secu-
rity scanner by NIST [9]. Arachni has the lowest false positive ratio [/8]
of all the tested scanners in each of the test categories of WAVSEP
(see Figure 4.5) and also overall (see Figure 4.6).

— The false negative ratio should be as low as possible:

Arachni has the highest coverage (number of exploits found) of all the
tested scanners, both on WAVSEP (see Figure j.4) and on Nordnet
(see Figure 4.7). A high coverage implies a low false negative ratio [47].

— The scanner can handle basic authentication (can scan as a logged in
user):
Arachni can handle authenticated scans, supporting both Kerberos and
HTTP authentication (see Arachni documentation [33]).

— Reports should gather similar issues to avoid ambiguities:

By using the vulnerability category as class name in the scan reports
similar issues were grouped together, see Figure 4.9.

67

CHAPTER 5. CONCLUSIONS

e From developers:

— Any reports should be easily understood for developers even if they are
security novices:

I tried to meet this requirement by showing early versions of the scan
report (see Figure 4.10) to developers and then modifying it according to
their feedback. A more extensive evaluation of this requirement is outside
the scope of this thests.

— Developers should not have to write any extensive tests (scanning should
be as automated as possible):

Dewvelopers do not need to write any tests at all since the actual scan is
fully automated, but it requires a minor set up (see subsection J.4.1). See
the guide in Appendix B for more information about this.

o From people responsible for the CI environment / Jenkins:

— The scan needs to be fast, maximum five minutes:

This requirement is important since one of the core principles of the Agile
method is speed (see section 2.2). It was met by supplying a timeout
of 5 minutes to Arachni (see the script at GitHub [12] and Arachni
documentation [33]). Having a fized timeout is not perfect, since it could
lead to unnoticed issues, and if the scan is deterministic (follows the same
pattern every time) this can lead to some issues never being detected. The
5 minute timeout was never hit during testing, but in the future it may be
needed to configure the scan settings differently to make it faster, maybe
by dividing the scan on several machines or by limiting the checks made.

— The scanner should preferably be able to run on Linux:
Arachni runs on Linux (see Arachni documentation [33]).

— The scanner should indicate how the scan went by exiting with certain
codes or by providing a scan report in JUnit [30] format:

This is solved by the wrapper script. It will read the scan report after the
scan and provide an appropriate exit code and/or a JUnit report, see the
script at GitHub [12] and Figure 4.10.

e From QA:

— The ability to somehow mark false positives and hide those in future
scans:

This is possible to do, but implementing it is outside the scope of this thesis.
Since each issue is assigned a unique id (hash) (see the documentation of
Arachni [33]), which could be saved in some sort of database it would be
possible to track the same issue appearing over several scans, and thereby
also ignore it.

68

5.1. DISCUSSION

— The automated scan should not be able to fail the build on its own:

The automated scan marks a step as unstable if any issues are found; It
does not fail the entire build. An example of this can be seen in Figure 4.8,
where the Cl: Automatic tests step is marked as unstable in the upper
row, and the project is still deployed to production.

— The ability to manually mark the build as pass or fail based on the scan
report:

Based on the scan report (see Figure 4.10) the QA can mark the QA:
Tests step as pass or fail, and if they mark it as fail the whole build will be
marked as fail as well. See Figure 4.8 for an example where the QA: Tests
step is marked as fail in the bottom row, and hence so is the whole build.

Evaluating scanners

The evaluation of scanners was performed by translating the technology at Nordnet,
and the requirements gathered in the interview study, into a list of applicable attack
vectors that a scanner should support. Based on those interviews and a web
application security scanner specification from NIST [9], the attack vectors that were
not applicable were motivated and removed, and the rest were marked as applicable,
or unknown (if something was unclear) (see Table 4.1).

In Table 4.2 20 different scanners are mapped to these attack vectors. The four
scanners that were chosen for testing (see Table 4.3) were not the best in terms
of number of supported attack vectors, instead of looking at that number while
comparing the scanners, several criteria was defined (see subsection 3.2.2). Among
others these criteria contained looking at groups of attack vectors together, for
example: columns C, D and E are all targeting XSS (see Table 4.1), and since Wapiti
supports two of three (C and D) and Jsky only one of three (C), Wapiti is preferable
over Jsky, even though Jsky supports one more attack vector.

Testing

The results of the WIVET coverage test shown in Figure 4.3 and the overall summary
of the WAVSEP test shown in Figure 4.6 clearly shows that Arachni [33] is the most
suitable scanner in this context. Arachni did not reach 100% coverage since it does
not support VBScript or Flash, but since these are not used at Nordnet it does not
matter.

To verify the results of the tests on WIVET and WAVSEP, Arachni and Burp
Suite were also tested at applications provided by Nordnet. This also helps avoiding
that the results are biased by deliberately vulnerable applications (see subsec-
tion 3.3.1). The two scanners ended up being tested on eight XSS vulnerabilities
(see Figure 4.7). Arachni found all the vulnerabilities and therefore it was chosen
for the integration.

69

CHAPTER 5. CONCLUSIONS

Integration and implementation

Three potential places to integrate security testing in the Agile development process
are compared, and the most automated of these suggestions end up being chosen,
which is to integrate security testing in the CI: Automatic tests step of Figure 3.1.
Arachni is then implemented there by using a wrapper script [12]. The finished de-
livery pipeline can be seen in Figure 4.8 and it supports nearly all requirements
gathered in the interview study, as motivated above. Once a scan is complete a
scan report will be published to Jenkins, which can be accessed in a summarized
form (see Figure 4.9, or as a full report (see Figure 4.10). The report contain
mandatory and optional items as described by NIST in subsection 3.4.2, which
includes information such as: the attack that was made, a proof that the attack
succeeded, and tips on how to mitigate the issue. Additional information is also
included in the report to make sure that everyone in the target group of this thesis
can understand the issue, and to help developers and QA to replicate, verify and fix
it.

Guide

The guide in Appendix B was influenced by internal guidelines found at Nordnet
and by two OWASP guides [44, 43], to make sure that it would feel familiar to
the readers and that the contents matched their level of security knowledge. The
final guide contains a short introduction that presents the intent of the guide, a
section explaining how to set up security testing in a project, a section explaining the
different parts of a scan report, and a section containing examples of what everything
will look like once set up (see section 4.5).

5.2 Integrating Automated Security Testing in the Agile
Development Process

Traditionally, security has been separated from the Agile development process,
leading to a development process that is neither truly Agile nor fully secure [11].
This has led to the release of insecure software, which in turn has led to the big
number of vulnerabilities discovered during the last few years (see Figure 2.6). I
have tried to make the Agile development process more secure by investigating the
following question (asked in the problem statement, see section 1.2):

“How can automated security tests be included in the Agile development process
in order to avoid vulnerabilities in production?”

Since this thesis focuses on the development of web applications, I have attempted
to solve the problem by investigating how a web application security scanner can be
integrated in the CI delivery pipeline (see subsection 2.2.1 and Figure 4.8). This
means that the application will be scanned each time it builds (on every commit).
After each scan, a scan report containing information about any issues discovered
will be published to Jenkins (see Figure 4.9 and Figure 4.10). This report is intended

70

5.3. RECOMMENDATIONS

for both developers, by providing information about the issues so they can start
fixing them, and for QA engineers, by providing information so that they are able
to verify each issue (see subsection 4.4.2); and therefore get enough information
to judge whether to pass or fail a build. Since a scan report is available early
in the delivery pipeline, developers will get fast feedback, and therefore they will
know about, and be able to fix any security related issues reported by the scanner,
before these reach production. There is a great deal of money that can be saved by
employing this approach, since the cost of fixing a bug is heavily related to where it
is found (see Figure 2.5). This means that the development process also becomes
more effective by using this approach.

This type of security testing is very easy to set up on a new or existing project,
and it is relatively easy to get started with since it is aimed at people who are security
novices. Therefore, the approach described in this thesis makes the Agile development
process more secure in a simple way. Since the integration and implementation is
made simple (see section 4.4 and section 4.5), the risk that the suggested approach
is going to be thrown away or sidestepped because of complexity is very low. The
suggested approach in this thesis is adapted to Nordnet, but it should also be general
enough to fit any Agile development process with minor tweaking. The delivery
pipeline and all of the technical requirements in section 4.1 are for example all
specific to Nordnet, but by following the same approach as this thesis it is possible
to come up with something similar in any Agile development process.

Since there is no security in the Agile development process originally (see sec-
tion 1.2 and section 2.2), making it secure may not seem like the hardest thing to do.
What I suggest does not only mean that the Agile development process gets secure,
but also more effective. However, this does not mean that what I suggest makes
the process fully secure; there is still much left to do. Some suggestions for future
work will be included later.

5.3 Recommendations

As discussed above, the solution that I propose is not perfect, but it is undoubtedly
a big step in the right direction. Therefore I advise anyone who wants a more
secure Agile development work flow to incorporate security testing by integrating
a vulnerability scanner (see subsection 2.5.2) in the testing step of the CI delivery
pipeline (see subsection 2.2.1). This is an easy to implement (see section 4.4) and
easy to use (see section 4.5) first step to achieving a more secure and effective Agile
development process.

This approach can later be extended, and in the next section some ways of doing
that are suggested.

71

CHAPTER 5. CONCLUSIONS

5.4 Future work

Due to the increase of vulnerabilities in the IT sector over the last few years
(see Figure 2.5), the importance of IT security is growing. At the same time
as this is happening, software development is moving towards an Agile approach
(see Figure 2.3), where security is not even mentioned (see section 1.2). Research
about a secure Agile development process is just starting to kick off with the first
ever workshop on Agile Secure Software Development [3] being held this August
(2015).

I hope that this thesis can be a useful resource for future works. Some possible
extensions that I have thought about are:

o FExtend the work of this thesis. Some ideas are:

— Investigate and evaluate what I suggest in this thesis. Does the scan report
contain enough information for the developer, and can it be understood
by a security novice?

— Investigate how to mark and remember false positives to avoid reporting
them over and over.

— Investigate if endpoint detection could be done automatically, without
the endpoints.json file.

— Investigate the possibility to do something similar for other software.

o Investigate methods of integrating security elsewhere in the process; maybe in
the user stories as described in [32], or by using secure code libraries.

e Compare the suggestions I have made in this thesis to other ways of integrating
security in the Agile development process, perhaps to static code analysis.

o Investigate if using both black-box and white-box testing together can find
even more vulnerabilities.

72

Bibliography

[10]

[11]

[12]

Acunetix. Acunetiz Web Vulnerability Scanner. 2015. URL: http://www.acun
etix.com/vulnerability-scanner/ (visited on 05/07/2015).

Agile Alliance. What is Agile Software Development? 2015. URL: http://w
ww . agilealliance . org/the - alliance / what - is - agile/ (visited on
05/07/2015).

ASSD. The First International Workshop on Agile Secure Software Develop-
ment. 24-28 Aug, 2015. Toulouse, France. URL: http://www.ares-conferenc
e.eu/conference/workshops/assd-2015/.

M. A. Awad. “A Comparison between Agile and Traditional Software De-
velopment Methodologies”. Honors Thesis. University of Western Australia,
2005.

K. Louise Barriball and Alison While. “Collecting data using a semi-structured
interview: a discussion paper”. In: Journal of Advanced Nursing 19 (1994),
pp- 328-335. DOI: 10.1111/j.1365-2648.1994.tb01088.x.

Kent Beck. Test Driven Development: By Example. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002. 1sBN: 0321146530.

Kent Beck et al. Manifesto for Agile Software Development. 2001. URL: http:
//www.agilemanifesto.org/ (visited on 05/07/2015).

Simon Bennetts. OWASP Zed Attack Proxy Project - OWASP. 2015. URL:
https://www.owasp.org/index.php/0OWASP_Zed_Attack_Proxy_Project
(visited on 05/07/2015).

Paul E. Black et al. “Software Assurance Tools: Web Application Security Scan-
ner Functional Specification Version 1.0”. In: National Institute of Standards
and Technology (2008).

Grady Booch. Object Oriented Design with Applications. Redwood City, CA,
USA: Benjamin-Cummings Publishing Co., Inc., 1991. 1SBN: 0805300910.

Helen Bravo. “DevOps and Security: It’s Happening. Right Now.” Front Range
OWASP Conference 2013. 2013. URL: https://www.owasp.org/index.php/F
ront_Range_OWASP_Conference_2013/Sessions/Sess4_Techl.

Andreas Brostrom. CI scanner. 2015. URL: https://gist.github.com/abro
strom/74859c3e863c3121ba96 (visited on 06/05/2015).

73

http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
http://www.agilealliance.org/the-alliance/what-is-agile/
http://www.agilealliance.org/the-alliance/what-is-agile/
http://www.ares-conference.eu/conference/workshops/assd-2015/
http://www.ares-conference.eu/conference/workshops/assd-2015/
http://dx.doi.org/10.1111/j.1365-2648.1994.tb01088.x
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/Front_Range_OWASP_Conference_2013/Sessions/Sess4_Tech1
https://www.owasp.org/index.php/Front_Range_OWASP_Conference_2013/Sessions/Sess4_Tech1
https://gist.github.com/abrostrom/74859c3e863c3121ba96
https://gist.github.com/abrostrom/74859c3e863c3121ba96

[13]

[14]

[24]
[25]

[26]

BIBLIOGRAPHY

Shay Chen. Commercial Web Application Scanner Benchmark. 2011. URL:
http://sectooladdict.blogspot.se/2011/08/commercial-web-applica
tion-scanner.html (visited on 05/07/2015).

Shay Chen. WAVSEP Web Application Scanner Benchmark 2014. 2014. URL:
http://sectooladdict.blogspot.se/2014/02/wavsep-web-application-
scanner.html (visited on 05/07/2015).

Shay Chen. WAVSEP - Web Application Vulnerability Scanner Evaluation
Project. 2014. URL: https: //code . google . com/p/wavsep/ (visited on
05/07/2015).

R. E. Davis et al. “Interviewer effects in public health surveys”. In: Health
Education Research 25.1 (2010), pp. 14-26. DOT: 10.1093/her/cyp046.

Adam Doupé, Marco Cova, and Giovanni Vigna. “Why Johnny Can’t Pentest:
An Analysis of Black-box Web Vulnerability Scanners”. In: Proceedings of the
7th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. DIMVA’10. Bonn, Germany: Springer-Verlag, 2010,
pp. 111-131. 1SBN: 3642142141, 9783642142147.

Tore Dyba and Torgeir Dingsgyr. “Empirical studies of agile software develop-
ment: A systematic review”. In: Information and Software Technology 50.9-10
(2008), pp. 833-859. 1SsN: 0950-5849. DOI: http://dx.doi.org/10.1016/j.1
nfsof.2008.01.006.

eBay Inc. Electronics, Cars, Fashion, Collectibles, Coupons and More Online
Shopping | eBay. 2015. URL: http://www.ebay.com/ (visited on 05/12/2015).

Ecma International. JSON. 2013. URL: http://www. json.org/ (visited on
05/07/2015).

Joseph Feiman and Neil MacDonald. Magic Quadrant for Application Security
Testing. Tech. rep. 2014. URL: https://www.gartner.com/doc/2786417.

Finansinspektionen. Finansinspektionen. 2015. URL: http://www . fi . se
(visited on 06/03/2015).

Forrester Research. The Software Security Risk Report. Tech. rep. 2012. URL:
http://www.coverity.com/library/pdf/the-software-security-risk-
report.pdf.

Martin Fowler. Continuous Integration. 2006. URL: http://martinfowler.co
m/articles/continuousIntegration.html (visited on 05/07/2015).

Michal Goldstein. Good Old Files. 2013. URL: https://github.com/hacktic
s/good-old-files (visited on 05/07/2015).

G.K. Hanssen, D. Smite, and N.B. Moe. “Signs of Agile Trends in Global
Software Engineering Research: A Tertiary Study”. In: Global Software Engi-
neering Workshop (ICGSEW), 2011 Sizth IEEE International Conference on.
Aug. 2011, pp. 17-23. DOL: 10.1109/ICGSE-W.2011.12.

74

http://sectooladdict.blogspot.se/2011/08/commercial-web-application-scanner.html
http://sectooladdict.blogspot.se/2011/08/commercial-web-application-scanner.html
http://sectooladdict.blogspot.se/2014/02/wavsep-web-application-scanner.html
http://sectooladdict.blogspot.se/2014/02/wavsep-web-application-scanner.html
https://code.google.com/p/wavsep/
http://dx.doi.org/10.1093/her/cyp046
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://www.ebay.com/
http://www.json.org/
https://www.gartner.com/doc/2786417
http://www.fi.se
http://www.coverity.com/library/pdf/the-software-security-risk-report.pdf
http://www.coverity.com/library/pdf/the-software-security-risk-report.pdf
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://github.com/hacktics/good-old-files
https://github.com/hacktics/good-old-files
http://dx.doi.org/10.1109/ICGSE-W.2011.12

BIBLIOGRAPHY

[27]

[40]

[41]

Margaret C. Harrell and Melissa A. Bradley. Data Collection Methods: Semi-
Structured Interviews and Focus Groups. Tech. rep. Santa Monica, CA: RAND
Corporation, 2009. URL: http://www.rand.org/pubs/technical_reports
/TR718.

Yao-Wen Huang et al. “Securing Web Application Code by Static Analysis
and Runtime Protection”. In: Proceedings of the 13th International Conference
on World Wide Web. WWW ’04. New York, NY, USA: ACM, 2004, pp. 40-52.
ISBN: 1-58113-844-X. DOI: 10.1145/988672.988679.

Jason Huggins, Shinya Katasani, and Patrick Lightbody. Selenium - Web
Browser Automation. 2015. URL: http://www.seleniumhq.org/ (visited on
05/07/2015).

JUnit. JUnit - About. 2014. URL: http://junit.org/ (visited on 05/07/2015).

Kohsuke Kawaguchi, R.Tyler Croy, and Andrew Bayer. Welcome to Jenkins CI!
| Jenkins CI. 2015. URL: https://jenkins-ci.org/ (visited on 05/07/2015).

Vidar Kongsli. “Towards Agile Security in Web Applications”. In: Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications. OOPSLA ’06. Portland, Oregon, USA:
ACM, 2006, pp. 805-808. 1SBN: 159593491X. DOI: 10.1145/1176617.1176727.

Tasos Laskos. Arachni - Web Application Security Scanner Framework. 2015.
URL: http://www.arachni-scanner.com/ (visited on 05/07/2015).

Aditya P. Mathur. Foundations of Software Testing. 2nd ed. Pearson India,
2013. 1SBN: 8131794768, 97881317947601.

Bruce Mayhew. OWASP WebGoat Project. 2015. URL: https://www.owasp.o
rg/index.php/Category:0WASP_WebGoat_Project (visited on 05/07/2015).

Gary McGraw. Software Security: Building Security In. Addison-Wesley Pro-
fessional, 2006. 1SBN: 0321356705, 9780321356703.

MITRE Corporation. CWE-928: Weaknesses in OWASP Top Ten. 2013.
URL: https://cwe .mitre.org/data/definitions /928 . html (visited
on 05/07/2015).

NIST. Statistics Results. 2007. URL: https://nvd.nist.gov/cvss.cfm
(visited on 05/07/2015).

NIST. Statistics Results. 2015. URL: https://web.nvd.nist.gov/view/vuln
/statistics-results?adv_search=true&cves=on&pub_date_start_month
=0&pub_date_start_year=2000&pub_date_end_month=11&pub_date_end_y
ear=2014 (visited on 05/07/2015).

Nordnet AB. IT security - nordnet corporate web. 2015. URL: http://org.nor
dnet.se/corporate-governance/internal-control/it-security (visited
on 05/07/2015).

Nordnet AB. nordnet corporate web. 2015. URL: http://org.nordnet . se/
(visited on 05/07/2015).

(0]

http://www.rand.org/pubs/technical_reports/TR718
http://www.rand.org/pubs/technical_reports/TR718
http://dx.doi.org/10.1145/988672.988679
http://www.seleniumhq.org/
http://junit.org/
https://jenkins-ci.org/
http://dx.doi.org/10.1145/1176617.1176727
http://www.arachni-scanner.com/
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://cwe.mitre.org/data/definitions/928.html
https://nvd.nist.gov/cvss.cfm
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&pub_date_start_month=0&pub_date_start_year=2000&pub_date_end_month=11&pub_date_end_year=2014
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&pub_date_start_month=0&pub_date_start_year=2000&pub_date_end_month=11&pub_date_end_year=2014
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&pub_date_start_month=0&pub_date_start_year=2000&pub_date_end_month=11&pub_date_end_year=2014
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&pub_date_start_month=0&pub_date_start_year=2000&pub_date_end_month=11&pub_date_end_year=2014
http://org.nordnet.se/corporate-governance/internal-control/it-security
http://org.nordnet.se/corporate-governance/internal-control/it-security
http://org.nordnet.se/

BIBLIOGRAPHY

Oracle. java.com: Java + You. 2015. URL: https://www. java.com/en/
(visited on 05/15/2015).

OWASP. OWASP Guide Project. Tech. rep. 2.0.1. 2005. URL: https://www.o
wasp.org/index.php/0WASP_Guide_Project.

OWASP. OWASP Testing Project. Tech. rep. 4.0. 2013. URL: https://www.o0
wasp.org/index.php/0OWASP_Testing_Project.

OWASP. OWASP Top Ten Project. 2015. URL: https://www.owasp.org/ind
ex.php/Category:0WASP_Top_Ten_Project (visited on 05/07/2015).

OWASP. The Open Web Application Security Project. 2015. URL: https://ww
w.owasp.org/index.php/Main_Page (visited on 05/07/2015).

Daniel Owen. SANS: What is a false negative? 2015. URL: https://www.s
ans . org/security-resources/idfaq/false_negative . php (visited on
05/07/2015).

Daniel Owen. SANS: What is a false positive and why are false positives a
problem? 2015. URL: https://www.sans.org/security-resources/idfaq
/false_positive.php (visited on 05/07/2015).

Ron Patton. Software Testing. 2nd ed. Indianapolis, IN, USA: Sams, 2005.
ISBN: 0672327988, 9780672327988.

PMD. PMD - Don’t shoot the messenger. 2015. URL: https://github.com/p
md/pmd (visited on 06/03/2015).

PortSwigger Ltd. Burp Suite. 2015. URL: http://portswigger .net/burp/
(visited on 05/07/2015).

Andres Riancho. w3af - Open Source Web Application Security Scanner. 2015.
URL: http://w3af.org/ (visited on 05/07/2015).

Dominique Righetto. Automated Audit using W3SAF. 2013. URL: https://w
ww . owasp . org/ index . php / Automated _Audit _using_W3AF (visited on
05/07/2015).

W. W. Royce. “Managing the Development of Large Software Systems: Con-
cepts and Techniques”. In: Proceedings of the 9th International Conference on
Software Engineering. ICSE ’87. Monterey, California, USA: IEEE Computer
Society Press, 1987, pp. 328-338. 1SBN: 0897912160.

Juha Sasskilahti and Juha Roning. “Challenges with Software Security in Agile
Software Development”. Internal Ericsson Documentation. 2011.

Pivotal Software. Spring Framework Reference Documentation. 2014. URL:
http://docs.spring.io/spring/docs/current/spring-framework-refe

rence/html/ (visited on 06/04/2015).

Eugene H. Spafford. “The Internet Worm Program: An Analysis”. In: SIG-
COMM Comput. Commun. Rev. 19.1 (Jan. 1989), pp. 17-57. 1sSN: 0146-4833.
DOI: 10.1145/66093.66095.

76

https://www.java.com/en/
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.sans.org/security-resources/idfaq/false_negative.php
https://www.sans.org/security-resources/idfaq/false_negative.php
https://www.sans.org/security-resources/idfaq/false_positive.php
https://www.sans.org/security-resources/idfaq/false_positive.php
https://github.com/pmd/pmd
https://github.com/pmd/pmd
http://portswigger.net/burp/
http://w3af.org/
https://www.owasp.org/index.php/Automated_Audit_using_W3AF
https://www.owasp.org/index.php/Automated_Audit_using_W3AF
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/
http://dx.doi.org/10.1145/66093.66095

BIBLIOGRAPHY

[58]
[59]

Standish Group International. Chaos Manifesto. Tech. rep. 2011.

A. Tappenden et al. “Agile security testing of Web-based systems via
HTTPUnit”. In: Agile Conference, 2005. Proceedings. July 2005, pp. 29—
38. DOI: 10.1109/ADC.2005.11.

UBM Tech. Black Hat | Furope 2013 - Speakers, Shay Chen. 2013. URL:
https://www.blackhat.com/eu-13/speakers/Shay-Chen.html (visited on
05/07/2015).

University of Maryland. FindBugs. 2015. URL: http://findbugs.sourcefor
ge.net/ (visited on 06/03/2015).

Bedirhan Urgun. WIVET - Web Input Vector Extractor Teaser. 2014. URL:
https://github.com/bedirhan/wivet (visited on 05/07/2015).

Veracode. The Software Security Risk Report. Tech. rep. 5. 2013. URL: https:
//www.veracode.com/sites/default/files/Resources/Reports/state-o
f-software-security-volume-5-report.pdf.

Stephen de Vries. ContinuumSecurity. 2015. URL: http://www.continuumsec
urity.net/ (visited on 05/07/2015).

Chwan-Hwa (John) Wu and J. David Irwin. Introduction to Computer Networks
and Cybersecurity. 1st. Boca Raton, FL, USA: CRC Press, Inc., 2013. 1SBN:
1466572132, 9781466572133.

7

http://dx.doi.org/10.1109/ADC.2005.11
https://www.blackhat.com/eu-13/speakers/Shay-Chen.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://github.com/bedirhan/wivet
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-5-report.pdf
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-5-report.pdf
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-5-report.pdf
http://www.continuumsecurity.net/
http://www.continuumsecurity.net/

Appendix A

WAVSEP results

A.1 Arachni

79

WAVSEP v1.5

Categories

Reflected Cross Site Scripting (RXSS)
Coverage = 91,18%

False positives reported = 0,00%

SQL Injection
Coverage = 100,00%
False positives reported = 0,00%

Local File Inclusion/Directory Traversal/Path Traversal
Coverage = 100,00%
False positives reported = 0,00%

Remote File Inclusion
Coverage = 100,00%
False positives reported = 0,00%

Arachni v2.0dev

Response Type
ReflectedXSS
ReflectedXSS
DomXSS

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Method Total Detect

HTTP GET
HTTP POST
HTTP GET
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

32
32

20
20
20
20
20
20

59
59
59
59
59
59
59
59
59
59
59
59

D O © © © © © © © © © ©o ©

29
29

20
20
20
20
20
20

59
59
59
59
59
59
59
59
59
59
59
59

O ©W ©W ©W © © © © © © © ©o ©

Unvalidated Redirect
Coverage = 100,00%
False positives reported = 0,00%

The Old, Backup and Unreferenced Files
Coverage = 100,00%
False positives reported = 0,00%

Coverage
False positive

Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses

False positive test cases
Erroneous 404 Responses

Erroneous 200 Responses

False positive test cases

99,52%
0,00%

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP GET
HTTP GET

15
15
15
15

91
91

15
15
15
15

91
91

APPENDIX A. WAVSEP RESULTS

A.2 Burp Suite

82

WAVSEP v1.5

Categories

Reflected Cross Site Scripting (RXSS)
Coverage = 91,18%

False positives reported = 0,00%

SQL Injection
Coverage = 100,00%
False positives reported = 30,00%

Local File Inclusion/Directory Traversal/Path Traversal
Coverage = 69,49%
False positives reported = 12,50%

Remote File Inclusion
Coverage = 72,22%
False positives reported = 0,00%

Burp Suite v1.6.12

Response Type
ReflectedXSS
ReflectedXSS
DomXSS

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Method Total Detect

HTTP GET
HTTP POST
HTTP GET
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

32
32

20
20
20
20
20
20

59
59
59
59
59
59
59
59
59
59
59
59

D O © © © © © © © © © ©o ©

31
31

20
20
20
20
20
20

44
43
29
28
44
43
44
43
44
43
44
43

O N N NN NN ~N~N &~~~

Unvalidated Redirect
Coverage = 46,67%
False positives reported = 22,22%

The Old, Backup and Unreferenced Files
Coverage = 25,27 %
False positives reported = 33,33%

Coverage
False positive

Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses

False positive test cases
Erroneous 404 Responses

Erroneous 200 Responses

False positive test cases

66,72%
16,28%

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP GET
HTTP GET

15
15
15
15

91
91

23
23

A.3. OWASP ZAP

A.3 OWASP ZAP

85

WAVSEP v1.5

Categories

Reflected Cross Site Scripting (RXSS)
Coverage = 92,65%

False positives reported = 0,00%

SQL Injection
Coverage = 100,00%
False positives reported = 0,00%

Local File Inclusion/Directory Traversal/Path Traversal
Coverage = 77,12%
False positives reported = 0,00%

Remote File Inclusion
Coverage = 100,00%
False positives reported = 16,67 %

OWASP ZAP v2.3.1

Response Type
ReflectedXSS
ReflectedXSS
DomXSS

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Method Total Detect

HTTP GET
HTTP POST
HTTP GET
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

32
32

20
20
20
20
20
20

59
59
59
59
59
59
59
59
59
59
59
59

D O © © © © © © © © © ©o ©

31
32

20
20
20
20
20
20

59
59
59
59
59
59
32
32
32
32
32
32

- © © © © ©W © © © © © © ©

Unvalidated Redirect
Coverage = 100,00%
False positives reported = 22,22%

The Old, Backup and Unreferenced Files
Coverage = 31,32%
False positives reported = 100,00%

Coverage
False positive

Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses

False positive test cases
Erroneous 404 Responses

Erroneous 200 Responses

False positive test cases

76,86%
13,95%

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP GET
HTTP GET

15
15
15
15

91
91

15
15
15
15

35
22

APPENDIX A. WAVSEP RESULTS

A.4 w3af

88

WAVSEP v1.5

Categories

Reflected Cross Site Scripting (RXSS)
Coverage =79,41%

False positives reported = 0,00%

SQL Injection
Coverage = 82,35%
False positives reported = 30,00%

Local File Inclusion/Directory Traversal/Path Traversal
Coverage = 39,97%
False positives reported = 75,00%

Remote File Inclusion
Coverage = 22,22%
False positives reported = 33,33%

w3afv1.6.48

Response Type
ReflectedXSS
ReflectedXSS
DomXSS

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Erroneous 500 Responses
Erroneous 500 Responses
Erroneous 404 Responses
Erroneous 404 Responses
Erroneous 200 Responses
Erroneous 200 Responses
Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses
Identical 200 Responses
Identical 200 Responses

False positive test cases

Method Total Detect

HTTP GET
HTTP POST
HTTP GET
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

32
32

20
20
20
20
20
20

59
59
59
59
59
59
59
59
59
59
59
59

D O © © © © © © © © © ©o ©

25
25

20
20
20
20
14
14

33
32
13
20
33
32
20
20
20
20
20
20

N O O O ©O O O ©W © O O W W

Unvalidated Redirect
Coverage = 36,67 %
False positives reported = 11,11%

The Old, Backup and Unreferenced Files
Coverage = 23,08%
False positives reported = 0,00%

Coverage
False positive

Redirect 302 Responses
Redirect 302 Responses
Valid 200 Responses
Valid 200 Responses

False positive test cases
Erroneous 404 Responses

Erroneous 200 Responses

False positive test cases

42,55%
27,91%

HTTP GET
HTTP POST
HTTP GET
HTTP POST
HTTP GET

HTTP GET
HTTP GET
HTTP GET

15
15
15
15

91
91

11
11

21
21

Appendix B

Guide

91

Security Testing in the Cl Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrdm Security Testing in the Cl Environment 1.0 Open

Security Testing in the ClI
Environment

Page
1(9)

Security Testing in the Cl Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrdm Security Testing in the Cl Environment 1.0 Open

Table of Contents

T INTTOAUCTION Lttt st e 3
AN < 1] © T TP SSUPURRR 4
2 B = g e Yo)| a1 3] o PN SRR URSPU 4
K I =T @] PRSP 5
N e | 0] o1 [T ST U UUPURR PP 7
B N <Y a L] o Yo) a1 T] o P SRR UTRPU 7
4.2 JENKINS ..ttt ettt ettt e bt e st e e bt e s abe e beenateebeens 7

Page
2(9)

Security Testing in the Cl Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrdm Security Testing in the Cl Environment 1.0 Open

1 Introduction

This document is a small guide for Nordnet developers (employees and confractors) that
wants to have their project tested for vulnerabilities in the Cl environment.

Testing for vulnerabilities in the build process will hopefully lead to less vulnerabilities slipping
out into production and hence protect our customers and Nordnet’s reputation.

The actual setup is fast and will result in reports being created and available on Jenkins after
the Cl: Automatic tests phase is complete (see the Examples section). The purpose of the
report is to give fast feedback on potential vulnerabilities to developers and to help QA with
their manual work in the QA: Tests phase.

This document is divided into the following sections:

e Setup - This section explain how to modify your project to allow for testing in the ClI:
Automatic tests phase.

e Report - This section explain what is included in the report and why.

e Examples - This section contains examples of how it will look when everything is setup
correctly, what kind of information you will find and how to interpret it.

For information on how to write secure code please refer to the Secure Coding Guideline and
the References section of the report published to Jenkins.

Page
3(9)

Security Testing in the Cl Environment

Date Author File name Version Security classification
2015-06-22 Andreas Brostrom Security Testing in the Cl Environment 1.0 Open
2 Setup

To enable security testing on a project we use a vulnerability scanner. The scanner operates
in two phases; Crawling and Penetration testing, where crawling means that the scanner tries
to find all URLs of the application and penetration testing means that it tries to penetrate the
application via these URLs, in order to discover security weaknesses.

The scanner needs to know where to start in order to crawl and test the application; therefore
you must include a file with endpoints for your application, meaning URLs where the scanner
can start.

2.1 endpoints.json
This is the file that you must include in your project. The file contains endpoint URLs (starting

points for the scan) for the application you are setting up in the ci environment. The file
should be in JSON format and look like this:

{

"endpoints": [
"http://target.ci/endpointl™”,
"http://target.ci/endpoint2"

]

}

The endpoint(s) must contain the full URL of the endpoint in the CI environment.

Note: The endpoints.json file should be located in:

<component_root>/test/security/ci/endpoints.json

For more information see the Examples section.

Page
4(9)

Security Testing in the Cl Environment

Date Author File name Version Security classification
2015-06-22 Andreas Brostrdm Security Testing in the Cl Environment 1.0 Open
3 Report

When the vulnerability scanning is complete and vulnerabilities were found, a report is
published on Jenkins in Junit! format2. In each such report the following items are included
(see the Examples section for an example report):

o The category for the vulnerability as class name in the JUnit report. Since JUnit is built
for Javasd and collects all issues per class this means that all issues in the same
category are grouped together in the published report.

e URL - The URL of the vulnerability as both issue name in the JUnit report and as a field in
the description. In the report all issues are named <classname>.<name>. Having the
URL as name makes it easier to distinguish between issues.

e For each issue there is a description (mentfioned in the above item about URL), this
description includes the following:

o Title - A title for the issue, a longer version of the category above, e.g. the
category XSS_TAG has the name Cross-Site Scripting (XSS) in HTML fag - XSS in
HTML tag.

o Severity - The severity of the issue, this is any one of the following (sorted from
lower to higher): informational, low, medium, high.

o Description - A short description of the issue.

o References - Some references to the issue from well-known sources such as
OWASPA4.

o Variations - This is a list of all variations found by the scanner of how to exploit
the specific vulnerability. The following is included for each variation:

= Trust - If the variation is frusted or noft (if it is untrusted it must be verified
manually).

= Affected page - A full URL of the exploif, works best when Method
(below) is GET.

= The description also include the following items, if they are available:
e Injected - The injected payload.
e Proof - Proof that the exploit worked.

e HTIP request - The full HTTP request with all headers. This is a
good complement to the affected page since this takes care
of all HTTP methods (POST, PUT, etc.).

1

http://junit.org/
2 https://svn.jenkins-ci.org/trunk/hudson/dtkit/dtkit-format/dtkit-junit-

model/src/main/resources/com/thalesgroup/dtkit/junit/model/xsd/junit-7.xsd
% https://www.java.com/en/
4 https://www.owasp.org/index.php/Main_Page

‘ I Page

5(9)

Security Testing in the Cl Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrdm Security Testing in the Cl Environment 1.0 Open

o If applicable, the description also include the following items:

= Method - The HTTP method used by the scanner when it found the issue
(e.g. GET, POST etc.)

= Parameter - The parameter that was vulnerable in this specific case.

= Remediation Guidance - Some general information on how to remedy
the vulnerability.

Page
6(9)

Security Testing in the CI Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrom Security Testing in the CI Environment 1.0 * Open
4 Examples
All examples in this section use the component farget_app.

4.1 endpoints.json

Everything needed to setup your project is this file. Here is an example of how it looks in
target_app.

Location:

target_app/test/security/ci/endpoints.json

Contents:

{
"endpoints": [
"http://target_app.ci/target_app/"

}

4.2 Jenkins

If you have finished the setup you will perhaps see something like this in Jenkins:

eline: target_app

>

seline baeece6f2f95.32 =4 baeece6f2f95.32 -
EApr 24, 2015 9:52:3
=1 min 25 sec

fa
seline \ 5219e6411cf4.31 5219e6411cfd. 31 »
seline [sa1sesattciazn | @ [sarcessticiazn | @ [5219

Figure 1 - The build pipeline of target_app. This is what it looks like when the tests in the Cl: Automatic tests phase
has found issues and therefore marked the build as unstable.

Page
7(%)

Security Testing in the CI Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrom Security Testing in the CI Environment 1.0 Open

Clicking on an unstable (yellow/orange) box will bring you to the overview of that build
phase:

Back to Project o Build baeeceb6f2f95.32 Started 5 days 4 hr ago

Status (2015-apr_24 09:52:35) Tocok 1 min 25 sec on master
000000,

Changes |§éP Mo changes.

Console Qutput

s Started by upstream project target_app Cl build number 35
originally caused by:

View Build Information
« Started by upstream project target_app BUILD build number 32
Parameters originally caused by
< commit netification baeec ebf2f353efbb554f3379bb45b0d5abathde

Environment Variables Revision: bacecebi2(053efbh55418379bb45b0dEababde

o o git
Git Build Data » detached
Test Result (3 failures / +0)
Test Result XSS http:iftarget_app. citarget_appitestd/
X585 http:iftarget app.ci/target appitest2/
Previous Build XSS_TAG http://target_app ciltarget_app/test1/

Figure 2 — The build information. Test Result is included both as a link and as an overview of each unstable build.

The build phase overview contains historical information about the testing as well (3 failures /
+0 means that the amount of failures is unchanged since the last build). Clicking on one of
the links to Test Result will lead to the following page:

Test Result
3 failures itl}':

7 tests (x0)
Took 1 min 32 sec.

All Failed Tests

Test Mame Duration Age

db XSS http:/itarget_app.ciftarget_apptestd/ 2dsec 1

ok XSS http:/itarget_app.ciftarget_apptest?/ 1dsec 1

ok XSS_TAG.http://target_app.ci/target_app/test1/ Sdsec 1

All Tests

Package Duration Fail (diff) Skip (diff) Pass (diff} Total (diff)
\ 1 min 32

{root) ot 3 0 4 T

Figure 3 — Test Result overview. Contains information on how many test cases failed, passed or was skipped, among
other things.

Page
8(9)

Security Testing in the CI Environment

Date Author File name Version Security classification

2015-06-22 Andreas Brostrom Security Testing in the CI Environment 1.0 Open

Test cases are named <Test category>.<URL> to make it easy to identify where an issue has
occurred and what type it is. If one of the test cases is clicked it will lead to the following
page, the major part of the report:

Failed

XSS.http:/ltarget_app.ciltarget_appltest3/ (from secunty severity. high)

Failing for the past 1 build (Since @#42)
Took 24 sec.

Error Message
X55

Stacktrace

Cross-5Site Scripting (XS5) - X55

* Severity: HIGH

* URL: http: //target app.ci/target app/test3/
* Method: POST

* Parameter: username

EEEIEIEEEEREES
Variations
SEEZESEEEEEEER

Variation 1 (Trusted)
* Injected: ci_scanner_name<some_dangercus_input 374d8e30118449a9946323T068852279/>
* Proof: <some_dangerous_input_374dB8e3011844939946323f968852279/>

* Affected page: http://target_app.ci/target_app/test3/

* HTTP request:

POST /target_app/test3/ HTTP/1.1

Host: target_app.ci

Accept-Encoding: gzip, deflate

User-Agent: ci_scanner

Accept: text/html,application/xhtml4xml,application/xml;q=8.9,%/%;5=08.8
Content-Length: 86

Content-Type: application/x-www-form-urlenceded

e e
Description

Figure 4 — The actual scan report. Contains the information described in section 3 — Report.

Page
2(9)

	Glossary
	Introduction
	Preface
	Problem statement
	Purpose
	Outline

	Background
	About Nordnet
	Agile software development
	Continuous integration

	Software testing
	Approaches
	Automation

	Web application security
	Common web application vulnerabilities
	Security testing approaches

	Agile security testing
	Source code analysis tools
	Vulnerability scanners

	Approach
	Pre study
	Evaluating approaches for agile security testing
	Interview study

	Evaluating scanners
	Gathering requirements
	Comparing scanners

	Testing
	Environment
	Execution

	Integration and Implementation
	Integration
	Implementation

	Guide

	Results
	Pre study
	Evaluating scanners
	Gathering requirements
	Comparing scanners

	Testing
	WIVET
	WAVSEP
	Nordnet

	Integration and implementation
	Integration
	Implementation

	Guide

	Conclusions
	Discussion
	Goals
	Results

	Integrating Automated Security Testing in the Agile Development Process
	Recommendations
	Future work

	Bibliography
	WAVSEP results
	Arachni
	Burp Suite
	OWASP ZAP
	w3af

	Guide

